搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响

肖宏宇 李勇 鲍志刚 佘彦超 王应 李尚升

引用本文:
Citation:

触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响

肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升

Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure

Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng
PDF
HTML
导出引用
  • 本文利用六面顶压机, 在5.6 GPa, 1250—1450 ℃的高压高温条件下, 分别选用FeNiCo和NiMnCo触媒合金开展了金刚石大单晶的生长实验, 系统地考察了触媒组分对金刚石单晶裂纹缺陷的影响. 首先, 通过对两种组分触媒晶体生长实验对比发现, 金刚石大单晶裂纹缺陷出现的概率与触媒组分相关联. 同NiMnCo触媒相比, FeNiCo触媒生长的金刚石单晶更容易出现生长裂纹. 我们认为, 这与FeNiCo触媒黏度高、流动性差、碳素输运能力差、生长中晶体比表面积大, 进而导致其对生长条件稳定性的要求较高有关. 其次, 两种触媒极限增重速度和生长时间的关系曲线表明, 相同生长时间条件下, NiMnCo触媒生长金刚石单晶的极限增重速度相对较大. 再次, 扫描电子显微镜测试结果表明, 裂纹缺陷的出现与否同晶体表面平整度的高低无必然联系, 表面平整度高的金刚石单晶内部也可能存在裂纹缺陷. 最后, 经对金刚石单晶傅里叶微区红外测试结果进行分析, 得出了氮杂质含量的高低与金刚石单晶裂纹缺陷的出现与否无内在关联性的研究结论.
    Under the condition of 5.6 GPa and 1250–1450 ℃, the diamond single crystals are synthesized in a cubic anvil high-pressure and high-temperature apparatus. High-purity FeNiCo solvents or NiMnCo solvents are chosen as the catalysts. High-purity (99.99%) graphite powders selected as a carbon source. High-quality abrasive grade diamond single crystals with relatively developed (100) or (111) crystal planes are used as crystal seeds. The effects of catalyst composition on crack defects in diamond single crystals are studied carefully. Firstly, using FeNiCo and NiMnCo catalysts respectively, we carry out the diamond single crystal growth experiments. It is found that under the same crystal growth condition, the probability of crystal crack defects in diamond single crystals grown with FeNiCo catalyst is significantly higher than that of crystals grown with NiMnCo catalyst. We believe that this is related to the high viscosity, poor fluidity of FeNiCo catalyst melt, and the large specific surface area of the crystal during growth, which leads to its high requirements for the stability of growth conditions. Secondly, the relationship between the growth time and the limit weight gain speed of the diamond single crystal synthesized, respectively, by FeNiCo catalyst and NiMnCo catalyst are investigated. The results are shown below. 1) The limiting growth rate of diamond single crystal increases with the growth time going by. 2) In the same growth time, the limit growth rate of diamond crystal grown with NiMnCo catalyst is higher than that of diamond crystal grown with NiMnCo catalyst. Thirdly, by scanning electron microscopy (SEM), we calibrate the surface morphology of the synthesized diamond single crystal. The test results show that the diamond single crystal has a high surface flatness. Even for the crystals with crack defects in the interior, the surface flatness is still good. However, Fourier transform infrared (FTIR) measurements show that the nitrogen impurity content of diamond crystal grown by FeNiCo catalyst with crack defect is about 3.66×10–4. The content of nitrogen impurity in the crystal grown by NiMnCo catalyst without crack defect is about 4.88×10–4. The results show that there is no direct correlation between nitrogen impurity content and crack defects in diamond crystal.
      通信作者: 李勇, likaiyong6@163.com ; 李尚升, lishsh@hpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064038)、河南省高等学校重点科研项目计划(批准号: 20B140009)和贵州省科技厅重点项目(批准号: 黔科合基础-ZK[2021]重点019)资助的课题.
      Corresponding author: Li Yong, likaiyong6@163.com ; Li Shang-Sheng, lishsh@hpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064038), the Natural Science Foundation of the Henan Higher Education Institutions of China (Grant No. 20B140009), and the Key Projects of Guizhou Provincial Science and Technology Department, China (Grant No. Qiankehejichu ZK [2021] Key 019).
    [1]

    Strong H M 1963 J. Phys. Chem. 39 2057Google Scholar

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [3]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009 Nature 458 182Google Scholar

    [4]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. U.S.A. 116 7703Google Scholar

    [5]

    Pal'yanov Y N, Borzdov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A 2001 Diamond Relat. Mater. 10 2145Google Scholar

    [6]

    Pal'yanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth Des. 9 2922Google Scholar

    [7]

    Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863Google Scholar

    [8]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103Google Scholar

    [9]

    王春晓 2021 博士学位论文 (长春: 吉林大学)

    Wang C X 2021 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [10]

    Ralchenko V, Sedov V, Martyanov A, et al. 2022 Carbon 190 10Google Scholar

    [11]

    Meng X M, Tang W Z, Hei L F, Li C M, Askari S J, Chen G C, Lu F X 2008 Int. J. Refract. Met. Hard Mater. 26 485Google Scholar

    [12]

    Yao Y, Sang D D, Duan S S, Wang Q L, Liu C L 2021 Nanotechnology 32 332501Google Scholar

    [13]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [14]

    Kanekoa J, Yonezawa C, Kasugai Y, Sumiya H, Nishitani T 2000 Diamond Relat. Mater. 9 2019Google Scholar

    [15]

    Strelchuk V V, Nikolenko A S, Lytvyn P M, Ivakhnenko S O, Kovalenko T V, Danylenko I M, Malyuta S V 2021 Semicond. Phys. Quantum 24 261

    [16]

    Soffner L T S, Dos Santos A A A, Trindade D W, Filgueira M, Azevedo M G 2020 J. Cryst. Growth 550 125888Google Scholar

    [17]

    Miao X Y, Ma H A, Zhang Z F, Chen L C, Zhou L J, Li M S, Jia X P 2021 Chin. Phys. B 30 068102Google Scholar

    [18]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [19]

    Li S S, Zhang H, Su T C, Hu Q, Hu M H, Gong C S, Ma H A, Jia X P, Li Y, Xiao H Y 2017 Chin. Phys. B 26 068102Google Scholar

    [20]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [21]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668Google Scholar

    [22]

    肖宏宇, 秦玉琨, 李尚升, 马红安, 贾晓鹏 2011 金刚石与磨料磨具工程 31 25Google Scholar

    Xiao H Y, Qin Y K, Li S S, Ma H A, Jia X P 2011 Diamond Abrasives Eng. 31 25Google Scholar

    [23]

    Wentorf R H, Jr 1971 J. Phys. Chem. 76 18

    [24]

    Liang Z Z, Jia X, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [25]

    Kiflawi I, Mayer A E, Spear P M, van Wyk J A, Woods G S 1994 Philos. Mag. B 9 1141

    [26]

    Fang C, Shen W X, Zhang Y W, Mu P Y, Zhang Z F, Jia X P 2019 Cryst. Growth Des. 19 3955Google Scholar

  • 图 1  金刚石大单晶的生长组装示意图

    Fig. 1.  Sample assembly to treat synthesis diamond single crystals.

    图 2  两种组分触媒生长金刚石大单晶的光学显微照片 (a), (b) FeNiCo 触媒; (c), (d) NiMnCo触媒

    Fig. 2.  Optical micrographs of large diamond single crystals grown with two component catalysts: (a), (b) FeNiCo catalyst; (c), (d) NiMnCo catalyst.

    图 3  两种触媒体系生长金刚石单晶极限增重速度与生长时间的关系曲线

    Fig. 3.  The relationship between the limit growth rate and the growth time of diamond crystal grown with two kinds of catalyst systems.

    图 4  两种触媒生长金刚石单晶的SEM测试结果 (a) 图2(a)所示晶体; (b) 图2(b)所示晶体; (c) 图2(c)所示晶体; (d) 图2(d)所示晶体

    Fig. 4.  Scanning electron microscope photographs of diamond single crystals using different seed-crystals in diameters: (a) Diamond crystal of Fig. 2(a); (b) diamond crystal of Fig. 2(b); (c) diamond crystal of Fig. 2(c); (d) diamond crystal of Fig. 2(d).

    图 5  金刚石大单晶的微区红外吸收谱测试

    Fig. 5.  FTIR curve of diamond single crystals.

    表 1  两种触媒生长金刚石单晶的对比实验

    Table 1.  Comparative experiment of diamond single crystal growth with two kinds of catalysts.

    样品触媒组分晶体重量/mg晶体裂纹
    S1FeNiCo68.2有, 裂纹长约3/5晶体
    直径
    (图2(a))
    S2FeNiCo15.6有, 裂纹长约1/4晶体
    直径
    (图2(b))
    S3FeNiCo19.8有, 晶体裂为2部分
    S4FeNiCo20.9
    S5FeNiCo18.3
    S6NiMnCo60.9无(图2(c))
    S7NiMnCo17.8无(图2(d))
    S8NiMnCo21.6
    S9NiMnCo19.4
    S10NiMnCo18.5有, 晶体裂开为5部分
    下载: 导出CSV
    Baidu
  • [1]

    Strong H M 1963 J. Phys. Chem. 39 2057Google Scholar

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [3]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan, Medvedev S 2009 Nature 458 182Google Scholar

    [4]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgirard S, Bina C R, Jacobsen S D 2019 Proc. Natl. Acad. Sci. U.S.A. 116 7703Google Scholar

    [5]

    Pal'yanov Y N, Borzdov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A 2001 Diamond Relat. Mater. 10 2145Google Scholar

    [6]

    Pal'yanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth Des. 9 2922Google Scholar

    [7]

    Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863Google Scholar

    [8]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103Google Scholar

    [9]

    王春晓 2021 博士学位论文 (长春: 吉林大学)

    Wang C X 2021 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [10]

    Ralchenko V, Sedov V, Martyanov A, et al. 2022 Carbon 190 10Google Scholar

    [11]

    Meng X M, Tang W Z, Hei L F, Li C M, Askari S J, Chen G C, Lu F X 2008 Int. J. Refract. Met. Hard Mater. 26 485Google Scholar

    [12]

    Yao Y, Sang D D, Duan S S, Wang Q L, Liu C L 2021 Nanotechnology 32 332501Google Scholar

    [13]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [14]

    Kanekoa J, Yonezawa C, Kasugai Y, Sumiya H, Nishitani T 2000 Diamond Relat. Mater. 9 2019Google Scholar

    [15]

    Strelchuk V V, Nikolenko A S, Lytvyn P M, Ivakhnenko S O, Kovalenko T V, Danylenko I M, Malyuta S V 2021 Semicond. Phys. Quantum 24 261

    [16]

    Soffner L T S, Dos Santos A A A, Trindade D W, Filgueira M, Azevedo M G 2020 J. Cryst. Growth 550 125888Google Scholar

    [17]

    Miao X Y, Ma H A, Zhang Z F, Chen L C, Zhou L J, Li M S, Jia X P 2021 Chin. Phys. B 30 068102Google Scholar

    [18]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [19]

    Li S S, Zhang H, Su T C, Hu Q, Hu M H, Gong C S, Ma H A, Jia X P, Li Y, Xiao H Y 2017 Chin. Phys. B 26 068102Google Scholar

    [20]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

    [21]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668Google Scholar

    [22]

    肖宏宇, 秦玉琨, 李尚升, 马红安, 贾晓鹏 2011 金刚石与磨料磨具工程 31 25Google Scholar

    Xiao H Y, Qin Y K, Li S S, Ma H A, Jia X P 2011 Diamond Abrasives Eng. 31 25Google Scholar

    [23]

    Wentorf R H, Jr 1971 J. Phys. Chem. 76 18

    [24]

    Liang Z Z, Jia X, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [25]

    Kiflawi I, Mayer A E, Spear P M, van Wyk J A, Woods G S 1994 Philos. Mag. B 9 1141

    [26]

    Fang C, Shen W X, Zhang Y W, Mu P Y, Zhang Z F, Jia X P 2019 Cryst. Growth Des. 19 3955Google Scholar

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究.  , 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 李海宁, 禹利达, 甘仁杰, 张伟斌, 杨占锋. 颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法.  , 2023, 72(15): 154301. doi: 10.7498/aps.72.20230522
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展.  , 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [6] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响.  , 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [7] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [8] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响.  , 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [9] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长.  , 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [10] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响.  , 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [11] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性.  , 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [12] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [13] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征.  , 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [14] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇. 温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响.  , 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [15] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [16] 周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安. 锌添加对大尺寸金刚石生长的影响.  , 2014, 63(24): 248104. doi: 10.7498/aps.63.248104
    [17] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [18] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征.  , 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [19] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征.  , 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [20] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
计量
  • 文章访问数:  3784
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-10-20
  • 上网日期:  2022-11-01
  • 刊出日期:  2023-01-20

/

返回文章
返回
Baidu
map