Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions

Li Yong Li Zong-Bao Song Mou-Sheng Wang Ying Jia Xiao-Peng Ma Hong-An

Citation:

Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions

Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diamond is well known for its excellent properties, such as its hardness, high thermal conductivity, high electron and hole mobility, high breakdown field strength and large band gap (5.4 eV), which has been extensively used in many fields. However, its application in semiconductor area needs to be further understood, because it is irreplaceable by conventional semiconductor materials, especially in the extreme working conditions. In order to obtain diamond semiconductor with excellent electrical performances, diamond crystals co-doped with boron (B) and hydrogen (H) are synthesized in an FeNi-C system by temperature gradient growth (TGG) at pressure 6.0 GPa and temperature 1600 K. Fourier infrared spectra (FTIR) measurements displayed that H is the formation of sp3 CH2-antisymmetric and sp3 -CH2-symmetric vibrations in the obtained diamond. Furthermore, the corresponding absorption peaks of H element are located at 2920 cm-1 and 2850 cm-1, respectively. Hall effects measurements demonstrated that the co-doped diamond exhibited that p- type material semiconductor performance, and the conductivity of the co-doped diamond is significantly enhanced comparing tocompared with the conductivity of the B-doping diamond. The results indicated that the Hall mobility mobilities is nearly equivalent between B-doped and co-doped diamond crystals are nearly equivalent, while the concentrations of the carriers and conductivity of the co-doped diamonds are higher than those of the B-doped diamond crystals. It is also noticed that the nitrogen concentration of the co-doped diamond decreases obviously, when the H and B are introduced into the diamond structure. Additionally, the change of the conductivity is investigated by first-principles calculation. In the B-doping diamond, two impurity levels are located in the forbidden band with small gaps. These impurity states above the Fermi level couldcan trap the photo-excited electrons, while those below Fermi level can trap the photo-excited vacancies, improving the transfer of the photo-excited carriers to the reactive sites. With the H co-doped diamond, the two impurity states moved to the valance band maximum and merged into each other, which extends the valance band and improves the charge transfer efficiency. From the perspective of energy band, for the co-doped of B and N atoms co-doped diamond, the impurity states are contributed by N/B-2p states while the overlop and splitting of N/B-2p in the band gap appeared. For the H co-doped diamond, the splitting of the N/B-2p states vanishes and shifts to the lower energy level, which was due to the fact that the excess charge transferred from N to H. The calculation results above are in qualitatively agreement with experimental results. We hope that this investigation would be meaningful for the application of diamond in semiconductor field.
      Corresponding author: Li Zong-Bao, zongbaoli1982@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), Natural Science Foundation of Guizhou Province Education Department, China (Grant No. KY[2013]183) and Natural Science Foundation of Guizhou Province Science and Technology Agency, China (Grant Nos. LH[2015]7232, LH[2015]7233).
    [1]

    Li L, Xu B, Li M S {2008 Chin. Sci. Bull. 53 937

    [2]

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A {2015 J. Synthetic Crystal 44 2984 (in Chinese) [李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984]

    [3]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 64 128101]

    [4]

    Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P, Ma H A 2016 Chin. Phys. Lett. 33 028101

    [5]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A {2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 048101]

    [6]

    Li Y, Jia X P, Song M S, Ma H A, Zhou Z X, Fang C, Wang F B, Chen N, Wang Y {2015 Modern Phys. Lett. B 29 1550162

    [7]

    Kalish R, Reznik A, Uzan-Saguy C, Cytermann C 2000 Appl. Phys. Lett. 76 757

    [8]

    Miyazaki T, Okushi H 2002 Diamond Relat. Mater. 11 323

    [9]

    Chrenko R M 1973 Phys. Rev. B: Solid State 7 4560

    [10]

    Ma Y M, Tse John S, Cui T, Klug Dennis D, Zhang L J, Xie Y, Niu Y L, Zou G T 2005 Phys. Rev. B: Condens. Matter 72 014306

    [11]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [12]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X 2007 Diamond Relat. Mater. 16 283

    [13]

    Katayama Yoshida H, Nishimatsu T, Yamamoto T, Orita N {2001 J. Phys. Conderns. Matter 13 890

    [14]

    Chevallier J, Theys B, Lussonand A, Grattepain C, Deneuville A, Geeraert E 1998 Phys. Rev. B: Condens. Matter. Phys. 58 7966

    [15]

    Lombardi E B, Mainwood A, Osuch K 2003 Diamond Relat. Mater. 12 490

    [16]

    Zou Y G, Liu B B, Yao M G, Hou Y Y, Wang L, Yu S D, Wang P, Cui T, Zou G T, Sundqvist B, Wang G R, Liu Y C 2007 Acta Phys. Sin. 56 5172 (in Chinese) [邹永刚, 刘冰冰, 姚明光, 侯元元, 王霖, 于世丹, 王鹏, 崔田, 邹广田, Sundqvist B, 王国瑞, 刘益春 2007 56 5172]

    [17]

    Coudberg P, Catherine Y 1987 Thin Solid Films 146 93

    [18]

    Mcnamara K M, Williams B E, Gleason K K, Scruggs B E 1994 J. Appl. Phys. 76 2466

    [19]

    Field J E 1992 The Properties of Natural and Synthetic Diamond vol. 36-41 (London: Academic) p81

    [20]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932

    [21]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677

    [22]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

  • [1]

    Li L, Xu B, Li M S {2008 Chin. Sci. Bull. 53 937

    [2]

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A {2015 J. Synthetic Crystal 44 2984 (in Chinese) [李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984]

    [3]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 64 128101]

    [4]

    Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P, Ma H A 2016 Chin. Phys. Lett. 33 028101

    [5]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A {2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 048101]

    [6]

    Li Y, Jia X P, Song M S, Ma H A, Zhou Z X, Fang C, Wang F B, Chen N, Wang Y {2015 Modern Phys. Lett. B 29 1550162

    [7]

    Kalish R, Reznik A, Uzan-Saguy C, Cytermann C 2000 Appl. Phys. Lett. 76 757

    [8]

    Miyazaki T, Okushi H 2002 Diamond Relat. Mater. 11 323

    [9]

    Chrenko R M 1973 Phys. Rev. B: Solid State 7 4560

    [10]

    Ma Y M, Tse John S, Cui T, Klug Dennis D, Zhang L J, Xie Y, Niu Y L, Zou G T 2005 Phys. Rev. B: Condens. Matter 72 014306

    [11]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [12]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X 2007 Diamond Relat. Mater. 16 283

    [13]

    Katayama Yoshida H, Nishimatsu T, Yamamoto T, Orita N {2001 J. Phys. Conderns. Matter 13 890

    [14]

    Chevallier J, Theys B, Lussonand A, Grattepain C, Deneuville A, Geeraert E 1998 Phys. Rev. B: Condens. Matter. Phys. 58 7966

    [15]

    Lombardi E B, Mainwood A, Osuch K 2003 Diamond Relat. Mater. 12 490

    [16]

    Zou Y G, Liu B B, Yao M G, Hou Y Y, Wang L, Yu S D, Wang P, Cui T, Zou G T, Sundqvist B, Wang G R, Liu Y C 2007 Acta Phys. Sin. 56 5172 (in Chinese) [邹永刚, 刘冰冰, 姚明光, 侯元元, 王霖, 于世丹, 王鹏, 崔田, 邹广田, Sundqvist B, 王国瑞, 刘益春 2007 56 5172]

    [17]

    Coudberg P, Catherine Y 1987 Thin Solid Films 146 93

    [18]

    Mcnamara K M, Williams B E, Gleason K K, Scruggs B E 1994 J. Appl. Phys. 76 2466

    [19]

    Field J E 1992 The Properties of Natural and Synthetic Diamond vol. 36-41 (London: Academic) p81

    [20]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932

    [21]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677

    [22]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

  • [1] Zhao Yong-Sheng, Yan Feng-Yun, Liu Xue. Calculation of positron annihilation lifetime in diamond doped with B, Cr, Mo, Ti, W, Zr. Acta Physica Sinica, 2024, 73(1): 017802. doi: 10.7498/aps.73.20231269
    [2] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] You Yue, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wang Jun-Zhuo, Gao Guang-Jin, Guo Ming-Ming, Nie Yuan. Research progress of large diamond single crystals under high pressure and high temperature. Acta Physica Sinica, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [7] Wang Ying, Li Yong, Li Zong-Bao. First-principle studies of the electronic structures and optical properties of diamond crystal co-doped with B and N. Acta Physica Sinica, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [8] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [9] Fang Chao, Jia Xiao-Peng, Chen Ning, Zhou Zhen-Xiang, Li Ya-Dong, Li Yong, Ma Hong-An. Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive. Acta Physica Sinica, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [10] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [11] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [12] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [13] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [14] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [16] Li Rong-Bin. Characterization of homoepitaxial and heteroepitaxial diamond films grown by chemical vapor deposition. Acta Physica Sinica, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [17] Tan Man-Lin, Zhu Jia-Qi, Zhang Hua-Yu, Zhu Zhen-Ye, Han Jie-Cai. Effect of boron doping on the electrical conduction of tetrahedral amorphous carbon films. Acta Physica Sinica, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [18] Yang Feng-Xia, Zhang Duan-Ming, Deng Zong-Wei, Jiang Sheng-Lin, Xu Jie, Li Shu-Dan. The influence of the matrix electrical conductivity on the dc poling behaviors and the loss of 0-3 ferroelectric composites. Acta Physica Sinica, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [19] Wen Chao, Sun De-Yu, Li Xun, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De, Jin Zhi-Hao. Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
Metrics
  • Abstract views:  6704
  • PDF Downloads:  258
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2016
  • Accepted Date:  09 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map