Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells

Pan Hong-Ying Quan Zhi-Jue

Citation:

Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells

Pan Hong-Ying, Quan Zhi-Jue
PDF
HTML
Get Citation
  • In this paper, the effects of p-layer hole concentration and p-layer thickness on the performances of InGaN p-i-n homojunction solar cells with different indium components and their intrinsic mechanisms are investigated by numerical simulations. it is found that the conversion efficiency of solar cells first increases and then decreases slightly with the increase of p-layer hole concentration and p-layer thickness. Moreover, the change of p-layer hole concentration and p-layer thickness will cause great changes of the conversion efficiency of the solar cells, especially as the indium composition increases. In order to better clarify and understand the physical mechanism of this phenomenon, the collection efficiency, I-V characteristic, built-in electric field and carrier transport of solar cells are analyzed in this paper. When the hole concentration is insufficient, the build-in electric filed is not strong enough to separate the most of the electric-hole pairs. This will reduce the collection efficiency. In addition, the lower the hole concentration, the higher the series resistance of solar cells will be and the more the power loss. So a conclusion can be drawn that the lower hole concentration of p-layer would be accompanied by the reduction of collection efficiency and the increase of series resistance, thus resulting in a lower conversion efficiency. With the increase of the hole concentration which is below an optimal value, the built-in electric field reaches the threshold, which can improve the collection efficiency. At the same time, although the series resistance is reduced to a certain extent, it still reduces the effective output power and limits the conversion efficiency. When the hole concentration is higher than the optimal value, the carrier mobility becomes the main factor limiting the conversion efficiency. As for the p-layer thickness, the simulation results indicate that the lateral transport of carriers from the p-layer to the anode electrodes becomes more obstructive with the thinning of p-layer thickness. This is because when the p-layer thickness decreases, thus causing the p-layer sectional area to decrease, the lateral series resistance becomes higher. It is clear that when the p-layer is too thin, the lateral series resistance is one of the main limiting factors affecting the conversion efficiency of solar cells.
      Corresponding author: Quan Zhi-Jue, quanzhijue@ncu.edu.cn
    • Funds: project supported by the National Natural Science Foundation of China (Grant No. 11674147) and the Key Research and Development Plan of Jiangxi Province, China (Grant No. 20171BBE50052)
    [1]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [2]

    Ambacher O 1998 J. Phys. D 31 2653Google Scholar

    [3]

    Strite S T, Morkoc H 1998 JVST B 10 1237Google Scholar

    [4]

    Mohammad S N, Morkoç H 1996 Prog. Quant. Electron. 20 361Google Scholar

    [5]

    Wang H L, Zhang X H, Wang H X, Li B, Chen C, Li Y X, Yan H, Wu Z S, Jiang H 2018 Chin. Phys. B 27 127805Google Scholar

    [6]

    Wu J, Walukiewicz W, Yu K M, Iii J W A, Haller E E, Hai L, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [7]

    Bhuiyan A G, Sugita K, Hashimoto A, Yamamoto A 2012 IEEE J. Photovolt. 2 276Google Scholar

    [8]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars S P 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [9]

    Nanishi Y, Saito Y, Yamaguchi T 2003 Jpn. J. Appl. Phys. 42 2549Google Scholar

    [10]

    Wu Y, Sun X J, Jia Y P, Li D B 2018 Chin. Phys. B 27 126101Google Scholar

    [11]

    Tran B T, Chang E Y, Trinh H D, Lee C T, Sahoo K C, Lin K L, Huang M C, Yu H W, Luong T T, Chung C C 2012 Sol. Energy Mater. Sol. Cells 102 208Google Scholar

    [12]

    Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Hai L, Schaff W J, Metzger W K, Kurtz S 2003 J. Appl. Phys. 94 6477Google Scholar

    [13]

    Fabien C A M, Moseley M, Gunning B, Doolittle W A, Ponce F A 2014 IEEE J. Photovolt. 4 601Google Scholar

    [14]

    Cai X M, Zeng S W, Zhang B P 2009 Appl. Phys. Lett. 95 183516Google Scholar

    [15]

    Islam M R, Kaysir M R, Islam M J, Hashimoto A, Yamamoto A 2013 J. Mater. Sci. Technol. 29 128Google Scholar

    [16]

    Shim J P, Choe M, Jeon S R, Seo D, Lee T, Lee D S 2011 Appl. Phys. Express 4 1166Google Scholar

    [17]

    Chen X, Matthews K D, Hao D, Schaff W J, Eastman L F 2008 Phys. Status Solidi 205 1103Google Scholar

    [18]

    Feng S W, Lai C M, Chen C H, Sun W C, Tu L W 2010 J. Appl. Phys. 108 093118Google Scholar

    [19]

    Wu S, Cheng L, Wang Q 2018 Superlattice Microst. 119 9Google Scholar

    [20]

    周梅, 赵德刚 2015 发光学报 36 534Google Scholar

    Zhou M, Zhao D G 2015 Chin. J. Lumin. 36 534Google Scholar

    [21]

    Benmoussa D, Hassane B, Abderrachid H 2013 International Renewable and Sustainable Energy Conference (IRSEC) Ouarzazate, Morocco, March 7−9, 2013 p23

    [22]

    Mesrane A, Rahmoune F, Mahrane A, Oulebsir A 2015 Int. J. Photoenergy 2015 1Google Scholar

    [23]

    Holec D, Costa P M F J, Kappers M J, Humphreys C J 2007 J. Cryst. Growth 303 314Google Scholar

    [24]

    Michael S, Bates A, Green M 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference 2005 Lake Buena Vista, FL, USA, Jan. 3-7, 2005 p719

    [25]

    Fischer S, Wetzel C, Haller E E, Meyer B K 1995 Appl. Phys. Lett. 67 1298Google Scholar

    [26]

    Bhattacharyya A, Li W, Cabalu J, Moustakas T D, Smith D J, Hervig R L 2004 Appl. Phys. Lett. 85 4956Google Scholar

    [27]

    Chao L, Ren Z, Xin C, Zhao B, Wang X, Yin Y, Li S 2014 IEEE Photono. Tchnol. Lett. 26 134Google Scholar

    [28]

    Fabien C A M, Doolittle W A 2014 Sol. Energy Mater. Sol. Cells 130 354Google Scholar

    [29]

    Shen Y C, Mueller G O, Watanabe S, Gardner N F, Krames M R 2007 Appl. Phys. Lett. 91 2Google Scholar

    [30]

    Chang J Y, Yen S H, Chang Y A, Kuo Y K 2013 IEEE J. Quantum Electron. 49 17Google Scholar

    [31]

    Wu J, Walukiewicz W 2003 Superlattice Microst. 34 63Google Scholar

    [32]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J 2002 Appl. Phys. Lett. 80 4741Google Scholar

    [33]

    Walukiewicz W, Iii J W A, Yu K M, Liliental-Weber Z, Wu J, Li S X, Jones R E, Denlinger J D 2006 J. Phys. D: Appl. Phys. 39 119Google Scholar

    [34]

    Brown G F, Iii J W A, Walukiewicz W, Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478Google Scholar

    [35]

    Kuo Y K, Chang J Y, Shih Y H 2012 IEEE J. Quantum Electron. 48 367Google Scholar

    [36]

    Brown G F, Ager J W, Walukiewicz W, Schaff W J, Wu J 2008 Appl. Phys. Lett. 93 6477Google Scholar

    [37]

    King P D C, Veal T D, Jefferson P H, Mcconville C F, Lu H, Schaff W J 2007 Phys. Rev. B 75 115312Google Scholar

    [38]

    Neufeld C J, Toledo N G, Cruz S C, Iza M, Denbaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 1571Google Scholar

  • 图 1  InxGa1–xN p-i-n同质结太阳电池结构示意图y是距离p层表面的位置, y = 0代表p层表面

    Figure 1.  Schematic of InxGa1–xN p-i-n homojunction solar cells. y is the position measured from the p-layer surface and y = 0 represents the p-layer surface.

    图 2  In0.2Ga0.8N, In0.4Ga0.6N和In0.6Ga0.4N p-i-n同质结电池中, (a)转换效率和(b)收集效率随p层空穴浓度NA+的关系

    Figure 2.  (a) Conversion efficiencies and (b) collection efficiencies with various NA+ for In0.2Ga0.8N, In0.4Ga0.6N, In0.6Ga0.4N p-i-n homojunction solar cells, respectively.

    图 3  (a) In0.2Ga0.8N, (c) In0.4Ga0.6N和(e) In0.6Ga0.4N p-i-n同质结在零偏压及光照下, 不同空穴浓度(NA+)下的内建电场; (b) In0.2Ga0.8N, (d) In0.4Ga0.6N和(f) In0.6Ga0.4N p-i-n同质结在不同空穴浓度(NA+)下的I-V曲线

    Figure 3.  Under AM1.5 illumination and zero bias, electric-field of (a) In0.2Ga0.8N, (c) In0.4Ga0.6N and (e) In0.6Ga0.4N p-i-n homojunction solar cells with various hole concentration (NA+); I-V curves of (b) In0.2Ga0.8N, (d) In0.4Ga0.6N and (f) In0.6Ga0.4N p-i-n homojunction solar cells with various hole concentration (NA+), respectively.

    图 4  In0.2Ga0.8N, In0.4Ga0.6N和In0.6Ga0.4N p-i-n同质结电池中, (a)转换效率和(b)收集效率随p层厚度的变化

    Figure 4.  (a) Conversion efficiency and (b) collection efficiency versus p-layer thickness for In0.2Ga0.8N, In0.4Ga0.6N and In0.6Ga0.4N p-i-n homojunction solar cells, respectively.

    图 5  不同表面复合速度下, In0.6Ga0.4N p-i-n同质结太阳电池在不同p层厚度下的(a)短路电流密度(Jsc)和(b)转换效率

    Figure 5.  (a) Short current density (Jsc) and (b) conversion efficiency of In0.6Ga0.4N p-i-n homojunction solar cells with various p-layer thickness at different surface recombination velocities.

    图 6  (a) In0.2Ga0.8N, In0.4Ga0.6N和In0.6Ga0.4N p-i-n同质结电池在不同p层厚度下的I-V曲线; (b)不同p层厚度下In0.6Ga0.4N p-i-n同质结电池p层的横向电阻

    Figure 6.  (a) I-V curves of In0.2Ga0.8N, In0.4Ga0.6N and In0.6Ga0.4N p-i-n homojunction solar cells with various p-layer thickness and (b) the lateral resistance of p-layer for In0.6Ga0.4N p-i-n homojunction solar cells.

    表 1  InxGa1–xN p-i-n同质结器件中的基准参数

    Table 1.  Parameters of baseline for InxGa1–xN p-i-n homojunction solar cells.

    参数 基准值
    铟组分/% 20, 40, 60
    少子寿命/ns 1
    p层掺杂激活浓度/cm–3 5 × 1017
    i层掺杂浓度/cm–3 1 ×1017
    n层掺杂浓度/cm–3 5 × 1017
    p层厚度/μm 0.2
    i层厚度/μm 0.4
    n层厚度μm 2
    表面复合速度/cm·s–1 1 ×104
    DownLoad: CSV
    Baidu
  • [1]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [2]

    Ambacher O 1998 J. Phys. D 31 2653Google Scholar

    [3]

    Strite S T, Morkoc H 1998 JVST B 10 1237Google Scholar

    [4]

    Mohammad S N, Morkoç H 1996 Prog. Quant. Electron. 20 361Google Scholar

    [5]

    Wang H L, Zhang X H, Wang H X, Li B, Chen C, Li Y X, Yan H, Wu Z S, Jiang H 2018 Chin. Phys. B 27 127805Google Scholar

    [6]

    Wu J, Walukiewicz W, Yu K M, Iii J W A, Haller E E, Hai L, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [7]

    Bhuiyan A G, Sugita K, Hashimoto A, Yamamoto A 2012 IEEE J. Photovolt. 2 276Google Scholar

    [8]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars S P 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [9]

    Nanishi Y, Saito Y, Yamaguchi T 2003 Jpn. J. Appl. Phys. 42 2549Google Scholar

    [10]

    Wu Y, Sun X J, Jia Y P, Li D B 2018 Chin. Phys. B 27 126101Google Scholar

    [11]

    Tran B T, Chang E Y, Trinh H D, Lee C T, Sahoo K C, Lin K L, Huang M C, Yu H W, Luong T T, Chung C C 2012 Sol. Energy Mater. Sol. Cells 102 208Google Scholar

    [12]

    Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Hai L, Schaff W J, Metzger W K, Kurtz S 2003 J. Appl. Phys. 94 6477Google Scholar

    [13]

    Fabien C A M, Moseley M, Gunning B, Doolittle W A, Ponce F A 2014 IEEE J. Photovolt. 4 601Google Scholar

    [14]

    Cai X M, Zeng S W, Zhang B P 2009 Appl. Phys. Lett. 95 183516Google Scholar

    [15]

    Islam M R, Kaysir M R, Islam M J, Hashimoto A, Yamamoto A 2013 J. Mater. Sci. Technol. 29 128Google Scholar

    [16]

    Shim J P, Choe M, Jeon S R, Seo D, Lee T, Lee D S 2011 Appl. Phys. Express 4 1166Google Scholar

    [17]

    Chen X, Matthews K D, Hao D, Schaff W J, Eastman L F 2008 Phys. Status Solidi 205 1103Google Scholar

    [18]

    Feng S W, Lai C M, Chen C H, Sun W C, Tu L W 2010 J. Appl. Phys. 108 093118Google Scholar

    [19]

    Wu S, Cheng L, Wang Q 2018 Superlattice Microst. 119 9Google Scholar

    [20]

    周梅, 赵德刚 2015 发光学报 36 534Google Scholar

    Zhou M, Zhao D G 2015 Chin. J. Lumin. 36 534Google Scholar

    [21]

    Benmoussa D, Hassane B, Abderrachid H 2013 International Renewable and Sustainable Energy Conference (IRSEC) Ouarzazate, Morocco, March 7−9, 2013 p23

    [22]

    Mesrane A, Rahmoune F, Mahrane A, Oulebsir A 2015 Int. J. Photoenergy 2015 1Google Scholar

    [23]

    Holec D, Costa P M F J, Kappers M J, Humphreys C J 2007 J. Cryst. Growth 303 314Google Scholar

    [24]

    Michael S, Bates A, Green M 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference 2005 Lake Buena Vista, FL, USA, Jan. 3-7, 2005 p719

    [25]

    Fischer S, Wetzel C, Haller E E, Meyer B K 1995 Appl. Phys. Lett. 67 1298Google Scholar

    [26]

    Bhattacharyya A, Li W, Cabalu J, Moustakas T D, Smith D J, Hervig R L 2004 Appl. Phys. Lett. 85 4956Google Scholar

    [27]

    Chao L, Ren Z, Xin C, Zhao B, Wang X, Yin Y, Li S 2014 IEEE Photono. Tchnol. Lett. 26 134Google Scholar

    [28]

    Fabien C A M, Doolittle W A 2014 Sol. Energy Mater. Sol. Cells 130 354Google Scholar

    [29]

    Shen Y C, Mueller G O, Watanabe S, Gardner N F, Krames M R 2007 Appl. Phys. Lett. 91 2Google Scholar

    [30]

    Chang J Y, Yen S H, Chang Y A, Kuo Y K 2013 IEEE J. Quantum Electron. 49 17Google Scholar

    [31]

    Wu J, Walukiewicz W 2003 Superlattice Microst. 34 63Google Scholar

    [32]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J 2002 Appl. Phys. Lett. 80 4741Google Scholar

    [33]

    Walukiewicz W, Iii J W A, Yu K M, Liliental-Weber Z, Wu J, Li S X, Jones R E, Denlinger J D 2006 J. Phys. D: Appl. Phys. 39 119Google Scholar

    [34]

    Brown G F, Iii J W A, Walukiewicz W, Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478Google Scholar

    [35]

    Kuo Y K, Chang J Y, Shih Y H 2012 IEEE J. Quantum Electron. 48 367Google Scholar

    [36]

    Brown G F, Ager J W, Walukiewicz W, Schaff W J, Wu J 2008 Appl. Phys. Lett. 93 6477Google Scholar

    [37]

    King P D C, Veal T D, Jefferson P H, Mcconville C F, Lu H, Schaff W J 2007 Phys. Rev. B 75 115312Google Scholar

    [38]

    Neufeld C J, Toledo N G, Cruz S C, Iza M, Denbaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 1571Google Scholar

  • [1] Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank). Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] Xiao You-Peng, Wang Huai-Ping, Feng Lin. Numerical simulation of germanium selenide heterojunction solar cell. Acta Physica Sinica, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [3] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [4] Li Jun-Wei, Wang Zu-Jun, Shi Cheng-Ying, Xue Yuan-Yuan, Ning Hao, Xu Rui, Jiao Qian-Li, Jia Tong-Xuan. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons. Acta Physica Sinica, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [5] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [6] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [7] Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang. Physical mechanism and optimal design of silicon heterojunction solar cells. Acta Physica Sinica, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [8] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [9] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [10] Wang Jian-Qiang, Liu Bang-Wu, Xia Yang, Xu Zheng. Simulation on reflection plate angles of the efficient black silicon PV modules. Acta Physica Sinica, 2014, 63(1): 018802. doi: 10.7498/aps.63.018802
    [11] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [12] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [13] Zhang Yong, Shan Zhi-Fa, Cai Jian-Jiu, Wu Hong-Qing, Li Jun-Cheng, Chen Kai-Xuan, Lin Zhi-Wei, Wang Xiang-Wu. Investigation of inverted metamorphic GaInP/GaAs/In0.3Ga0.7As (1 eV) triple junction solar cells for space applications. Acta Physica Sinica, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [14] Hu Yi-Bin, Hao Zhi-Biao, Hu Jian-Nan, Niu Lang, Wang Lai, Luo Yi. Studies on the composition of InGaN/AlN quantum dots grown by molecular beam epitaxy. Acta Physica Sinica, 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [15] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. Investigation of spectral regulation in dual- wavelength light-emitting diodes by using the selective p-doped barriers. Acta Physica Sinica, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [16] Zhou Mei, Zhao De-Gang. Influence of structure parameters on the performance of p-i-n InGaN solar cell. Acta Physica Sinica, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [17] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [18] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Xu Ling, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [19] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [20] ZHOU YU-GANG, SHEN BO, LIU JIE, ZHOU HUI-MEI, YU HUI-QIANG, ZHANG RONG, SHI YI, ZHENG YOU-DOU. EXTRACTION OF POLARIZATION-INDUCED CHARGE DENSITY INMODULATION-DOPED AlxGa1-xN/GaN HETEROSTRUCTURETHROUGH THE SIMULATION OF THE SCHOTTKY CAPACITANCE-VOLTAGE CHARACTERISTICS. Acta Physica Sinica, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
Metrics
  • Abstract views:  8515
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2019
  • Accepted Date:  25 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回
Baidu
map