Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical mechanism and optimal design of silicon heterojunction solar cells

Xiao You-Peng Wang Tao Wei Xiu-Qin Zhou Lang

Citation:

Physical mechanism and optimal design of silicon heterojunction solar cells

Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Silicon heterojunction (SHJ) solar cells are crystalline silicon wafer-based photovoltaic devices fabricated with thin-film deposition technology. The SHJ solar cells hold great potential for large-scale deployment for high conversion efficiencies with low-cost manufacturing. Recently Kaneka Corporation has fabricated an interdigitated-back-contact (IBC) SHJ solar cell with a certified 26.33% conversion efficiency in a large area (180.4 cm2), which is a world record for any 1-sun crystalline silicon wafer-based solar cell. The key feature of SHJ solar cells is the impressive highopen-circuit voltages (Voc) achieved by the excellent amorphous/crystalline silicon interface passivation. Generally, in SHJ solar cells, the boron doped hydrogenated amorphous silicon [(p)a-Si:H] serves as hole collector and the phosphorus doped hydrogenated amorphous silicon [(n) a-Si:H] functions as electron collector. In order to improve the lateral carrier transport of these layers, transparent conductive oxides (TCOs) are usually deposited on both sides of the solar cell. Therefore the parameters such as the heterointerface passivation quality, doping concentration and thickness of the a-Si:H doped layer, and work function of the transparent conductive oxide layer are the key factors that affect the performances of SHJ solar cells. Enormous research efforts have been devoted to studying the effects of the aforementioned influencing parameters on the photovoltaic characteristics of SHJ solar cells. Some research groups have addressed the physical mechanism behind the limitation of the solar cell efficiency. Owing to the insight into the physical mechanism some guidelines for optimally designing the high-performance solar cells in future are obtained. It seems therefore important to summarize the research efforts devoted to the physical mechanism and optimal design of SHJ solar cells.In the present review, we mainly discuss three important issues: 1) the amorphous/crystalline silicon interface passivation; 2) the Schottky barrier resulting from the work function mismatch between the (p)a-Si:H doped layer and the transparent conductive oxide layer; 3) the screening length that is required to efficiently shield the parasitic opposing band from bending originating from the work function mismatch between the (p)a-Si:H doped layer and the transparent conductive oxide layer. The numerical simulation and optimal design of SHJ solar cells are analyzed, and three strategies that may improve the solar cell performances are presented: 1) a hybrid SHJ solar cell structure with a rear heterojunction emitter and a phosphorus-diffused homojunction front surface field; 2) replacing the (p)a-Si:H doped layer by higher doping efficiency microcrystalline silicon alloys such as c-Si:H, c-SiOx:H or c-SiCx:H; 3) replacing the (p)a-Si:H doped layer by higher work function transition metal oxides such as MoOx, WOx or VOx. Finally, the research progress and future development of SHJ solar cells are also described.
      Corresponding author: Zhou Lang, lzhou@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 61574072) and the Post-Doctor Scientific Research Fund of Jiangxi Province, China (Grant No. 2015KY12).
    [1]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [2]

    Seif J P, Menda D, Descoeudres A, Barraud L, Özdemir O, Ballif C, de Wolf S 2016 J. Appl. Phys. 120 1433

    [3]

    Zhu F, Wang D, Bian J, Liu J, Liu Z 2016 Sol. Energy Mater. Sol. Cells 157 74

    [4]

    Geissbhler J, de Wolf S, Faes A, Badel N, Jeangros Q, Tomasi A, Barraud L, Descoeudres A, Despeisse M, Ballif C 2014 IEEE J. Photovolt. 4 1055

    [5]

    Tous L, Granata S N, Choulat P, Bearda T, Michel A, Uruena A, Cornagliotti E, Aleman M, Gehlhaar R, Russell R, Duerinckx F, Szlufcik J 2015 Sol. Energy Mater. Sol. Cells 142 66

    [6]

    Heng J B, Fu J, Kong B, Chae Y, Wang W, Xie Z, Reddy A, Lam K, Beitel C, Liao C, Erben C, Huang Z, Xu Z 2015 IEEE J. Photovolt. 5 82

    [7]

    Dabirian A, Lachowicz A, Schttauf J W, Paviet-Salomon B, Morales-Masis M, Hessler-Wyser A, Despersse M, Ballif C 2017 Sol. Energy Mater. Sol. Cells 159 243

    [8]

    Madani Ghahfarokhi O, Chakanga K, Geissendoerfer S, Sergeev O, von Maydell K, Agert C 2015 Prog. Photovolt: Res. Appl. 23 1340

    [9]

    Sinton R A, Cuevas A 1996 Appl. Phys. Lett. 69 2510

    [10]

    Bivour M, Reusch M, Schröer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [11]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514

    [12]

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) [陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华 2015 64 198801]

    [13]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516

    [14]

    Tasaki H, Kim W Y, Hallerdt M, Konagai M, Takahashi K 1988 J. Appl. Phys. 63 550

    [15]

    Leendertz C, Mingirulli N, Schulze T F, Kleider J P 2011 Appl. Phys. Lett. 98 202108

    [16]

    de Wolf S, Kondo M 2009 J. Appl. Phys. 105 103707

    [17]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z 2012 IEEE J. Photovolt. 2 7

    [18]

    Schulze T F, Leendertz C, Mingirulli N, Korte L, Rech B 2011 Energy Procedia 8 282

    [19]

    Janotta A, Janssen R, Schmidt M, Graf T, Stutzmann M, Görgens L, Bergmaier A, Dollinger G, Hammerl C, Schreiber S, Stritzker B 2004 Phys. Rev. B 69 115206

    [20]

    Kane D E, Swanson R M 1985 Proceedings of the 18th IEEE Photovoltaic Specialists Conference New York, USA, 1985 p578

    [21]

    Cleef M W M V, Schropp R E I, Rubinelli F A 1998 Appl. Phys. Lett. 73 2609

    [22]

    Varache R, Kleider J P, Gueunier-Farret M E, Korte L 2013 Mater. Sci. Eng: B 178 593

    [23]

    Kirner S, Hartig M, Mazzarella L, Korte L, Frijnts T, Scherg-Kurmes H, Ring S, Stannowski B, Rech B, Schlatmann R 2015 Energy Procedia 77 725

    [24]

    Klein A, Körber C, Wachau A, Säuberlich F, Gassenbauer Y, Harvey S P, Proffit D E, Mason T O 2010 Materials 3 4892

    [25]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [26]

    Ritzau K U, Bivour M, Schröer S, Steinkemper H, Reinecke P, Wagner F, Hermle M 2014 Sol. Energy Mater. Sol. Cells 131 9

    [27]

    Ghannam M, Abdulraheem Y, Shehada G 2016 Sol. Energy Mater. Sol. Cells 145 423

    [28]

    Zhong C L, Geng K W, Yao R H 2010 Acta Phys. Sin. 59 6538 (in Chinese) [钟春良, 耿魁伟, 姚若河 2010 59 6538]

    [29]

    Wen X, Zeng X, Liao W, Lei Q, Yin S 2013 Solar Energy 96 168

    [30]

    Favre W, Coignus J, Nguyen N, Lachaume R, Cabal R, Muñoz D 2013 Appl. Phys. Lett. 102 181118

    [31]

    Reusch M, Bivour M, Hermle M, Glunz S W 2013 Energy Procedia 38 297

    [32]

    Kim J, Abou-Kandil A, Fogel K, Hovel H, Sadana D K 2010 ACS Nano 4 7331

    [33]

    Bivour M, Schröer S, Hermle M 2013 Energy Procedia 38 658

    [34]

    Lachaume R, Favre W, Scheiblin P, Garros X, Nguyen N, Coignus J, Munoz D, Reimbold G 2013 Energy Procedia 38 770

    [35]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905

    [36]

    Nicolás S M D, Muñoz D, Ozanne A S, Nguyen N, Ribeyron P J 2011 Energy Procedia 8 226

    [37]

    de Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109

    [38]

    Schulze T F, Beushausen H N, Leendertz C, Dobrich A, Rech B, Korte L 2010 Appl. Phys. Lett. 96 515

    [39]

    Powell M J, Deane S C 1993 Phys. Rev. B 48 10815

    [40]

    Powell M J, Deane S C 1996 Phys. Rev. B 53 10121

    [41]

    Holman Z C, Filipic M, Descoeudres A, de Wolf S, Smole F, Topic M, Ballif C 2013 J. Appl. Phys. 113 013107

    [42]

    Demaurex B, de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Appl. Phys. Lett. 101 171604

    [43]

    Rößler R, Leendertz C, Korte L, Mingirulli N, Rech B 2013 J. Appl. Phys. 113 144513

    [44]

    Centurioni E, Iencinella D 2003 IEEE Electron Device Lett. 70 177

    [45]

    Ji K S, Choi J, Choi W S, Lee H M, Kim D H 2010 Proceeding of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hawaii, June 20-25, 2010 p003190

    [46]

    Maslova O A, Alvarez J, Gushina E V, Favre W, Gueunier-Farret M E, Gudovskikh A S, Ankudinov A V, Terukov E I, Kleider J P 2010 Appl. Phys. Lett. 97 252110

    [47]

    Demaurex B, Seif J P, Smit S, Macco B, Kessels W M M, Geissbhler J, de Wolf S, Ballif C 2014 IEEE J. Photovolt. 4 1387

    [48]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [49]

    Bivour M, Steinkemper H, Jeurink J, Schröer S, Hermle M 2014 Sol. Energy Mater. Sol. Cells 122 120

    [50]

    Qiu Z X, Ke C M, Aberle A G, Stangl R 2015 IEEE J. Photovolt. 5 1053

    [51]

    Battaglia C, Nicolas S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [52]

    Geissbhler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [53]

    Bivour M, Jeurink J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [54]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [55]

    Mews M, Korte L, Rech B 2016 Sol. Energy Mater. Sol. Cells 158 77

    [56]

    Qiao Z, Xie X J, Xue J M, Liu H, Liang L M, Hao Q Y, Liu C C 2015 Acta Phys. -Chim. Sin. 31 1207 (in Chinese) [乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 赫秋艳, 刘彩池 2015 物理化学学报 31 1207]

    [57]

    Ghahfarokhi O M, Maydell K V, Agert C 2014 Appl. Phys. Lett. 104 113901

    [58]

    Seif J P, Descoeudres A, Nogay G, Hänni S, Nicolas S M D, Holm N, Geissb hler J, Hessler-Wyser A, Duchamp M, Dunin-Borkowski R E, Ledinsky M, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1

    [59]

    Nogay G, Seif J P, Riesen Y, Tomasi A, Jeangros Q, Wyrsch N, Haug F J, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1654

    [60]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902

    [61]

    Nogay G, Stuckelberger J, Wyss P, Jeangros Q, Alleb C, Niquille X, Debrot F, Despeisse M, Haug F J, Löper P, Ballif C 2016 ACS Appl. Mater. Interfaces 8 35660

    [62]

    Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 97

    [63]

    63- Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R, Liu Z 2017 Front Energy 11 78

    [64]

    Herasimenka S Y, Dauksher W J, Tracy C J, Lee J, Augusto A, Jain H, Tyler K, Kiefer Z, Balaji P, Bowden S, Honsberg C 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p761

    [65]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506

    [66]

    Yu C, Yang M, Zhang Y, Yi Z, Yang Y, Xie T, Deng L, Yan H, Zhang J, Xu X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialist Conference Los Angeles, USA, June 14-19, 2015 p1

    [67]

    Mu noz D, Desrues T, Ozanne A S, Vecchi S D, Nicolás S M D, Jay F, Souche F, Nguyen N, Denis C, Arnal C, d'Alonzo G, Coignus J, Favre W, Blévin T, Valla A, Ozanne F, Salvetat T, Ribeyron P J 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference Frankfurt, Germany, September 24-28, 2012 p576

    [68]

    Kobayashi E, Nakamura N, Hashimoto K, Watabe Y 2013 Proceedings of the 28th European Photovoltaic Solar Energy Conference Villepinte, France, September 30-October 4, 2013 p691

    [69]

    Shih Z Y, Chen F S, Chang J, Hsieh W C, Chen M Y 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p884

    [70]

    Mingirulli N, Haschke J, Gogolin R, Ferre R, Schulze TF, Dusterhoft J, Harder N P, Korte L, Brendel R, Rech B 2011 Phys. Status Solidi Rapid Res. Lett. 5 159

    [71]

    Lee S Y, Choi H, Li H, Ji K, Nam S, Choi J, Ahn S W, Lee H M, Park B 2014 Sol. Energy Mater. Sol. Cells 120 412

    [72]

    Harrison S, Nos O, D'Alonzo G, Denis C, Coll A, Munoz D 2016 Energy Procedia 92 730

    [73]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, de Wolf S, Ballif C 2015 IEEE J. Photovolt. 5 1293

    [74]

    Radhakrishnan H S, Bearda T, Xu M, Jonnak S K, Malik S, Hasan M, Depauw V, Filipič M, Nieuwenhuysen K V, Abdulraheem Y, Debucquoy M, Gordon I, Szlufcik J, Poortmans J 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p1182

    [75]

    Nakamura J, Asano N, Hieda T, Okamoto C, Katayama H, Nakamura K 2014 IEEE J. Photovolt. 4 1491

    [76]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433

    [77]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

  • [1]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [2]

    Seif J P, Menda D, Descoeudres A, Barraud L, Özdemir O, Ballif C, de Wolf S 2016 J. Appl. Phys. 120 1433

    [3]

    Zhu F, Wang D, Bian J, Liu J, Liu Z 2016 Sol. Energy Mater. Sol. Cells 157 74

    [4]

    Geissbhler J, de Wolf S, Faes A, Badel N, Jeangros Q, Tomasi A, Barraud L, Descoeudres A, Despeisse M, Ballif C 2014 IEEE J. Photovolt. 4 1055

    [5]

    Tous L, Granata S N, Choulat P, Bearda T, Michel A, Uruena A, Cornagliotti E, Aleman M, Gehlhaar R, Russell R, Duerinckx F, Szlufcik J 2015 Sol. Energy Mater. Sol. Cells 142 66

    [6]

    Heng J B, Fu J, Kong B, Chae Y, Wang W, Xie Z, Reddy A, Lam K, Beitel C, Liao C, Erben C, Huang Z, Xu Z 2015 IEEE J. Photovolt. 5 82

    [7]

    Dabirian A, Lachowicz A, Schttauf J W, Paviet-Salomon B, Morales-Masis M, Hessler-Wyser A, Despersse M, Ballif C 2017 Sol. Energy Mater. Sol. Cells 159 243

    [8]

    Madani Ghahfarokhi O, Chakanga K, Geissendoerfer S, Sergeev O, von Maydell K, Agert C 2015 Prog. Photovolt: Res. Appl. 23 1340

    [9]

    Sinton R A, Cuevas A 1996 Appl. Phys. Lett. 69 2510

    [10]

    Bivour M, Reusch M, Schröer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [11]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514

    [12]

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) [陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华 2015 64 198801]

    [13]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516

    [14]

    Tasaki H, Kim W Y, Hallerdt M, Konagai M, Takahashi K 1988 J. Appl. Phys. 63 550

    [15]

    Leendertz C, Mingirulli N, Schulze T F, Kleider J P 2011 Appl. Phys. Lett. 98 202108

    [16]

    de Wolf S, Kondo M 2009 J. Appl. Phys. 105 103707

    [17]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z 2012 IEEE J. Photovolt. 2 7

    [18]

    Schulze T F, Leendertz C, Mingirulli N, Korte L, Rech B 2011 Energy Procedia 8 282

    [19]

    Janotta A, Janssen R, Schmidt M, Graf T, Stutzmann M, Görgens L, Bergmaier A, Dollinger G, Hammerl C, Schreiber S, Stritzker B 2004 Phys. Rev. B 69 115206

    [20]

    Kane D E, Swanson R M 1985 Proceedings of the 18th IEEE Photovoltaic Specialists Conference New York, USA, 1985 p578

    [21]

    Cleef M W M V, Schropp R E I, Rubinelli F A 1998 Appl. Phys. Lett. 73 2609

    [22]

    Varache R, Kleider J P, Gueunier-Farret M E, Korte L 2013 Mater. Sci. Eng: B 178 593

    [23]

    Kirner S, Hartig M, Mazzarella L, Korte L, Frijnts T, Scherg-Kurmes H, Ring S, Stannowski B, Rech B, Schlatmann R 2015 Energy Procedia 77 725

    [24]

    Klein A, Körber C, Wachau A, Säuberlich F, Gassenbauer Y, Harvey S P, Proffit D E, Mason T O 2010 Materials 3 4892

    [25]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [26]

    Ritzau K U, Bivour M, Schröer S, Steinkemper H, Reinecke P, Wagner F, Hermle M 2014 Sol. Energy Mater. Sol. Cells 131 9

    [27]

    Ghannam M, Abdulraheem Y, Shehada G 2016 Sol. Energy Mater. Sol. Cells 145 423

    [28]

    Zhong C L, Geng K W, Yao R H 2010 Acta Phys. Sin. 59 6538 (in Chinese) [钟春良, 耿魁伟, 姚若河 2010 59 6538]

    [29]

    Wen X, Zeng X, Liao W, Lei Q, Yin S 2013 Solar Energy 96 168

    [30]

    Favre W, Coignus J, Nguyen N, Lachaume R, Cabal R, Muñoz D 2013 Appl. Phys. Lett. 102 181118

    [31]

    Reusch M, Bivour M, Hermle M, Glunz S W 2013 Energy Procedia 38 297

    [32]

    Kim J, Abou-Kandil A, Fogel K, Hovel H, Sadana D K 2010 ACS Nano 4 7331

    [33]

    Bivour M, Schröer S, Hermle M 2013 Energy Procedia 38 658

    [34]

    Lachaume R, Favre W, Scheiblin P, Garros X, Nguyen N, Coignus J, Munoz D, Reimbold G 2013 Energy Procedia 38 770

    [35]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905

    [36]

    Nicolás S M D, Muñoz D, Ozanne A S, Nguyen N, Ribeyron P J 2011 Energy Procedia 8 226

    [37]

    de Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109

    [38]

    Schulze T F, Beushausen H N, Leendertz C, Dobrich A, Rech B, Korte L 2010 Appl. Phys. Lett. 96 515

    [39]

    Powell M J, Deane S C 1993 Phys. Rev. B 48 10815

    [40]

    Powell M J, Deane S C 1996 Phys. Rev. B 53 10121

    [41]

    Holman Z C, Filipic M, Descoeudres A, de Wolf S, Smole F, Topic M, Ballif C 2013 J. Appl. Phys. 113 013107

    [42]

    Demaurex B, de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Appl. Phys. Lett. 101 171604

    [43]

    Rößler R, Leendertz C, Korte L, Mingirulli N, Rech B 2013 J. Appl. Phys. 113 144513

    [44]

    Centurioni E, Iencinella D 2003 IEEE Electron Device Lett. 70 177

    [45]

    Ji K S, Choi J, Choi W S, Lee H M, Kim D H 2010 Proceeding of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hawaii, June 20-25, 2010 p003190

    [46]

    Maslova O A, Alvarez J, Gushina E V, Favre W, Gueunier-Farret M E, Gudovskikh A S, Ankudinov A V, Terukov E I, Kleider J P 2010 Appl. Phys. Lett. 97 252110

    [47]

    Demaurex B, Seif J P, Smit S, Macco B, Kessels W M M, Geissbhler J, de Wolf S, Ballif C 2014 IEEE J. Photovolt. 4 1387

    [48]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [49]

    Bivour M, Steinkemper H, Jeurink J, Schröer S, Hermle M 2014 Sol. Energy Mater. Sol. Cells 122 120

    [50]

    Qiu Z X, Ke C M, Aberle A G, Stangl R 2015 IEEE J. Photovolt. 5 1053

    [51]

    Battaglia C, Nicolas S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [52]

    Geissbhler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [53]

    Bivour M, Jeurink J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [54]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [55]

    Mews M, Korte L, Rech B 2016 Sol. Energy Mater. Sol. Cells 158 77

    [56]

    Qiao Z, Xie X J, Xue J M, Liu H, Liang L M, Hao Q Y, Liu C C 2015 Acta Phys. -Chim. Sin. 31 1207 (in Chinese) [乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 赫秋艳, 刘彩池 2015 物理化学学报 31 1207]

    [57]

    Ghahfarokhi O M, Maydell K V, Agert C 2014 Appl. Phys. Lett. 104 113901

    [58]

    Seif J P, Descoeudres A, Nogay G, Hänni S, Nicolas S M D, Holm N, Geissb hler J, Hessler-Wyser A, Duchamp M, Dunin-Borkowski R E, Ledinsky M, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1

    [59]

    Nogay G, Seif J P, Riesen Y, Tomasi A, Jeangros Q, Wyrsch N, Haug F J, de Wolf S, Ballif C 2016 IEEE J. Photovolt. 6 1654

    [60]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902

    [61]

    Nogay G, Stuckelberger J, Wyss P, Jeangros Q, Alleb C, Niquille X, Debrot F, Despeisse M, Haug F J, Löper P, Ballif C 2016 ACS Appl. Mater. Interfaces 8 35660

    [62]

    Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 97

    [63]

    63- Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R, Liu Z 2017 Front Energy 11 78

    [64]

    Herasimenka S Y, Dauksher W J, Tracy C J, Lee J, Augusto A, Jain H, Tyler K, Kiefer Z, Balaji P, Bowden S, Honsberg C 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p761

    [65]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506

    [66]

    Yu C, Yang M, Zhang Y, Yi Z, Yang Y, Xie T, Deng L, Yan H, Zhang J, Xu X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialist Conference Los Angeles, USA, June 14-19, 2015 p1

    [67]

    Mu noz D, Desrues T, Ozanne A S, Vecchi S D, Nicolás S M D, Jay F, Souche F, Nguyen N, Denis C, Arnal C, d'Alonzo G, Coignus J, Favre W, Blévin T, Valla A, Ozanne F, Salvetat T, Ribeyron P J 2012 Proceedings of the 27th European Photovoltaic Solar Energy Conference Frankfurt, Germany, September 24-28, 2012 p576

    [68]

    Kobayashi E, Nakamura N, Hashimoto K, Watabe Y 2013 Proceedings of the 28th European Photovoltaic Solar Energy Conference Villepinte, France, September 30-October 4, 2013 p691

    [69]

    Shih Z Y, Chen F S, Chang J, Hsieh W C, Chen M Y 2015 Proceedings of the 31st European Photovoltaic Solar Energy Conference Hamburg, Germany, September 14-18, 2015 p884

    [70]

    Mingirulli N, Haschke J, Gogolin R, Ferre R, Schulze TF, Dusterhoft J, Harder N P, Korte L, Brendel R, Rech B 2011 Phys. Status Solidi Rapid Res. Lett. 5 159

    [71]

    Lee S Y, Choi H, Li H, Ji K, Nam S, Choi J, Ahn S W, Lee H M, Park B 2014 Sol. Energy Mater. Sol. Cells 120 412

    [72]

    Harrison S, Nos O, D'Alonzo G, Denis C, Coll A, Munoz D 2016 Energy Procedia 92 730

    [73]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, de Wolf S, Ballif C 2015 IEEE J. Photovolt. 5 1293

    [74]

    Radhakrishnan H S, Bearda T, Xu M, Jonnak S K, Malik S, Hasan M, Depauw V, Filipič M, Nieuwenhuysen K V, Abdulraheem Y, Debucquoy M, Gordon I, Szlufcik J, Poortmans J 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p1182

    [75]

    Nakamura J, Asano N, Hieda T, Okamoto C, Katayama H, Nakamura K 2014 IEEE J. Photovolt. 4 1491

    [76]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433

    [77]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

  • [1] Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank). Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] Xiao You-Peng, Wang Huai-Ping, Feng Lin. Numerical simulation of germanium selenide heterojunction solar cell. Acta Physica Sinica, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [3] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [4] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [5] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [6] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [7] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [9] Zhang Yong, Shan Zhi-Fa, Cai Jian-Jiu, Wu Hong-Qing, Li Jun-Cheng, Chen Kai-Xuan, Lin Zhi-Wei, Wang Xiang-Wu. Investigation of inverted metamorphic GaInP/GaAs/In0.3Ga0.7As (1 eV) triple junction solar cells for space applications. Acta Physica Sinica, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [10] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [12] Yi Hong-Xia, Xiao Liu, Liu Pu-Kun, Hao Bao-Liang, Li Fei, Li Guo-Chao. Optimization of slow wave structures of space traveling wave tube based on collectability of spent beam. Acta Physica Sinica, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [13] Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [15] Jia Ming, Tian Zhong-Liang, Lai Yan-Qing, Li Jie, Yi Ji-Guang, Yan Jian-Feng, Liu Ye-Xiang. Study on the removal of impurities in silicon by electrorefining. Acta Physica Sinica, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [16] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [17] Ren Ju, Zheng Jian-Bang, Zhao Jian-Lin. Optimized design of active layers in organic donor-acceptor solar cells. Acta Physica Sinica, 2007, 56(5): 2868-2872. doi: 10.7498/aps.56.2868
    [18] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Xu Ling, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [19] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
Metrics
  • Abstract views:  7605
  • PDF Downloads:  514
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2016
  • Accepted Date:  19 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map