Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of perovskite-based triple-junction tandem solar cells

Xu Chang Zheng Dexu Dong Xinrui Wu SaJian Wu MingXing Wang Kai Liu Shengzhong(Frank)

Citation:

Research progress of perovskite-based triple-junction tandem solar cells

Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank)
PDF
Get Citation
  • The energy conversion efficiency of single-junction solar cells is limited by the Shockley-Queisser theory and the most effective strategy to break through this limit is to fabricate multi-junction tandem solar cells. Perovskite materials offer a continuously tunable energy band structure, which provides a new option for light-absorbing materials in multi-junction tandem cells. In the field of perovskite-based multi-junction tandem solar cells, triple-junction tandem solar cells demonstrating immense potential. The present paper introduces the configuration of triple-junction solar cells and addresses three scientific challenges. 1)Ensuring energy level alignment among sub-cells is a critical concern for three-junction batteries. Specifically, the top wide-band gap sub-cell must possess a band gap ranging from 1.8eV to 2.2eV; however, current perovskite material systems with wide-band gaps exhibit certain defects. 2) attaining current matching in multi-junction tandem solar cells while optimizing the absorption layer and minimizing parasitic absorption is essential to maximize solar cell current output. 3) The functional layers of multi-junction tandem solar cells are sequentially stacked using different deposition methods, thereby imposing higher compatibility requirements on the intermediate interconnect layer. Subsequently, the research progress of perovskite-based triple-junction tandem solar cells is then presented, encompassing perovskite/perovskite/silicon tandem solar cells, perovskite/perovskite/organic tandem solar cells, and all-perovskite tandem solar cells. Their respective highest efficiencies are 19.4%, 23.87%, and 27.1%. Finally, this paper examines the research direction for further enhancing the performance of triple-junction solar cells. In addition to augmenting energy conversion efficiency, perovskite-based solar cells must address stability issues in order to achieve future commercialization, thereby offering guidance for the development of efficient triple-junction cells.
  • [1]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506

    [2]

    Luo X H, Liu X, Lin X S, Wu T H, Wang Y B, Han Q F, Wu Y Z, Segawa H, Han L Y 2024 ACS Energy Lett. 9 1487

    [3]

    Liao J-F, Wu W-Q, Jiang Y, Zhong J-X, Wang L Z, Kuang D-B 2020 Chem. Soc. Rev. 49 354

    [4]

    NREL, Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2024-11-08]

    [5]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860

    [6]

    Hörantner M T, Leijtens T, Ziffer M E, Eperon G E, Christoforo M G, Mcgehee M D, Snaith H J 2017 ACS Energy Let. 2 2506

    [7]

    Wang Y, Ye S Y, Lim J W M, Giovanni D, Feng M J, Fu J H, Krishnamoorthy H N S, Zhang Q N, Xu Q, Cai R, Sum T C 2023 Nat. Commun. 14 6293

    [8]

    Marchat C, Williams R M 2024 Photoch. & Photobio. Sci. 23 1

    [9]

    Bremner S P, Levy M Y, Honsberg C B 2008 Prog. Photovolt: Res. Appl. 16 225

    [10]

    Yang J M, Bao Q Y, Shen L, Ding L M 2020 Nano energy 76 105019

    [11]

    France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121

    [12]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [13]

    Yeom K M, Kim S U, Woo M Y, Noh J H, Im S H 2020 Adv. Mater. 32 2002228

    [14]

    Zhang Y L, Chen X L, Zhou Z X, Zhao Y, Zhang X D 2021 Acta Energiae Solaris Sinica 42 49 (in Chinese) [张云龙,陈新亮,周忠信,赵 颖,张晓丹 2021 太阳能学报 42 49]

    [15]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476

    [16]

    Zhang Z C, Chen W J, Jiang X X, Cao J L, Yang H D, Chen H Y, Yang F, Shen Y X, Yang H Y, Cheng Q R, Chen X N, Tang X H, Kang S Q, Ou X-M, Brabec C J, Li Y W, Li Y F 2024 Nat. Energy 9 592

    [17]

    Wang X, Zhang D, Liu B Z, Wu X, Jiang X F, Zhang S F, Wang Y, Gao D P, Wang L N, Wang H L, Huang Z M, Xie X F, Chen T, Xiao Z G, He Q Y, Xiao S, Zhu Z L, Yang S F 2023 Adv. Mater. 35 2305946

    [18]

    Shen H P, Walter D, Wu Y L, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R 2019 Adv. Energy Mater. 10 1902840

    [19]

    Bastiani M D, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, IsikgorS F H, Liu J, Xu L J, Chen B, Kerschaver E V, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167

    [20]

    Shi Y T, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305

    [21]

    Zhang H, Park N-G 2024 DeCarbon 3 100025

    [22]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, Mcgehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105

    [23]

    Martinho F. 2021 Energy & Environ. Sci. 14 3840

    [24]

    Cheng Y H, Ding L M 2021 Sus. Mat. 1 324

    [25]

    Guter W, Schöne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W, Dimroth F 2009 Appl. Phys. Lett. 94 223504

    [26]

    Lai H J, Zhao Q Q, Chen Z Y, Chen H, Chao P J, Zhu Y L, Lang Y W, Zhen N Z, Mo D, Zhang Y Z, He F 2020 Joule 4 688-700

    [27]

    Zhang Z H, Li Z C, Meng L Y, Lien S Y, Gao P 2020 Adv. Funct. Mater. 30 2001904

    [28]

    Tong J H, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2020 ACS Energy Lett. 6 232

    [29]

    Montecucco R, Quadrivi E, Po R, Grancini G 2021 Adv. Energy Mater. 11 2100672

    [30]

    Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085

    [31]

    Huang T Y, Tan S, Nuryyeva S, Yavuz I, Babbe F, Zhao Y P, Abdelsamie M, Weber M H, Wang R, Houk K N, Sutter-Fella C M, Yang Y 2021 Sci.Adv 7 eabj1799

    [32]

    Correa-Baena J-P, Lou Y Q, Brenner T M, Snaider J, Sun S, Li X Y, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627

    [33]

    Enkhbayar E, Otgontamir N, Kim S Y, Lee J, Kim J H 2024 ACS Appl. Mater. Interfaces 16 35084

    [34]

    Stolterfoht M, Caprioglio P, Wolff C M, Márquez J A, Nordmann J, Zhang S S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F S, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D 2019 Energy & Environ. Sci. 12 2778

    [35]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy & Environ. Sci. 13 258

    [36]

    Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite A D 2023 Chem. Rev. 123 9565

    [37]

    Li X, Aftab S, Abbas A, Hussain S, Aslam M, Kabir F, Abd-Rabboh H S M, Hegazy H H, Xu F, Ansari M Z 2023 Nano Energy 118 108979

    [38]

    Mali S S, Patil J V, Shao J-Y, Zhong Y-W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989

    [39]

    Dong Z J, Li W P, Wang H L, Jiang X Y, Liu H C, Zhu L Q, Chen H N 2021 Solar RRL 5 2100370

    [40]

    Kerner R A, Xu Z J, Larson B W, Rand B P 2021 Joule 5 2273

    [41]

    Xu J X, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van Hest M F A M, Berry J J, Luther J M, Holman Z C, McGehee M D 2020 Science 367 1097

    [42]

    Li Z X, Feng X Z,Chen X G, Liu X P, Dai S Y, Cai M L 2024 Acta Energiae Solaris Sinica 45 30 (in Chinese) [李卓芯, 冯旭铮, 陈香港, 刘雪朋,戴松元,蔡墨朗 2024 太阳能学报 45 30]

    [43]

    Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356

    [44]

    Walsh A 2015 J. Phys. Chem. C 119 5755

    [45]

    Sala J, Heydarian M, Lammar S, Abdulraheem Y, Aernouts T, Hadipour A, Poortmans J 2021 ACS Appl. Energy Mater. 4 6377

    [46]

    Reza K M, Gurung A, Bahrami B, Chowdhury A H, Ghimire N, Pathak R, Rahman S I, Laskar M A R, Chen K, Bobba R S, Lamsal B S, Biswas L K, Zhou Y, Logue B, Qiao Q 2021 Sol. RRL 5 2000740

    [47]

    Zhang S Y, Tang M-C, Fan Y Y, Li R P, Nguyen N V, Zhao K, Anthopoulos T D, Hacker C A 2020 ACS Appl. Mater. Interfaces 12 34402

    [48]

    Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidamiinov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870

    [49]

    Jiang Q, Tong J H, Scheidt R A, Wang X M, L ouks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y F, Zhu K 2022 Science 378 1295

    [50]

    Jaysankar M, Qiu W, Bastos J, Tait J G, Debucquoy M, Paetzold U W, Cheyns D, Poortmans J 2016 J. Mater. Chem. A 4 10524

    [51]

    Shen X Y, Gallant B M, Holzhey P, Smith J A, Elmestekawy K A, Yuan Z C, Rathnayake P V G M, Bernardi S, Dasgupta A, Kasparavicius E, Malinauskas T, Caprioglio P, Shargaieva O, Lin Y-H, Mccarthy M M, Unger E, Getautis V, Widmer‐Cooper A, Herz L M, Snaith H J 2023 Adv. Mater. 35 2211742

    [52]

    An Y D, Zhang N, Zeng Z X, Cai Y T, Jiang W L, Qi F, Ke L Y, Lin F R, Tsang S W, Shi T T, Jen A K Y, Yip H L 2024 Adv. Mater. 36 2306568

    [53]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177

    [54]

    Kim D H, Muzzillo C P, Tong J H, Palmstrom A F, Larson B W, Choi C, Harvey S P, Glynn S, Whitaker J B, Zhang F, Li Z, Lu H P, Van Hest M F A M, Berry J J, Mansfield L M, Huang Y, Yan Y F, Zhu K 2019 Joule 3 1734

    [55]

    Thiesbrummel J, Peña-Camargo F, Brinkmann K O, Gutierrez-Partida E, Yang F J, Warby J, Albrecht S, Neher D, Riedl T, Snaith H J, Stolterfoht M, Lang F 2023 Adv. Energy Mater. 13 2202674

    [56]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201

    [57]

    Brinkmann K O, Becker T, Zimmermann F, Kreusel C, Gahlmann T, Theisen M, Haeger T, Olthof S, Tückmantel C, Günster M, Maschwitz T, Göbelsamnn F, Koch C, Hertel D, Caprioglio P, PeñA-Camargo F, Perdigón-toro L, Al-Ashouri A, Merten L, Hinderhofer A, Gomell L, Zhang S, Schreiber F, Albrecht S, Meerholz K, Neher D, Stolterfoht M, Riedl T 2022 Nature 604 280

    [58]

    Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A U, Van Kerschaver E, Baran D, Mcculloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, Wolf S D 2021 Joule 5 1566

    [59]

    Yu Y, Liu R, Liu C, Shi X L, Yu H, Chen Z G 2022 Adv. Energy Mater. 12 2201509

    [60]

    Belisle R A, Bush K A, Bertoluzzi L, Gold-Parker A, Toney M F, Mcgehee M D 2018 ACS Energy Lett. 3 2694

    [61]

    Caprioglio P, Smith J A, Oliver R D J, Dasgupta A, Choudhary S, Farrar M D, Ramadan A J, Lin Y-H, Greyson Christoforo M, Ball J M, Diekmann J, Thiesbrummel J, Zaininger K-A, Shen X Y, Johnston M B, Neher D, Stolterfoht M, Snaith H J 2023 Nat. Commun. 14 932

    [62]

    Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J 2016 Science 354 861

    [63]

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H, 2023 Acta Phys. Sin. 72 05881 (in Chinese) [张美荣,祝曾伟,杨晓琴,于同旭,郁骁琦,卢荻,李顺峰,周大勇,杨辉 2023 72 058801]

    [64]

    Hossain M I, Saleque A M, Ahmed S, Saidjafarzoda I, Shahiduzzaman M, Qarony W, Knipp D, Biyikli N, Tsang Y H 2021 Nano Energy 79 105400

    [65]

    Shao Y F, Zheng D X, Liu L, Liu J S, Du M Y, Peng L, Wang K, Liu S Z 2024 ACS Energy Lett. 9 4892

    [66]

    Li H, Zhang W 2020 Chem. Rev. 120 9835

    [67]

    Werner J, Sahli F, Fu F, Leon D J J, Walter A, Kamino B A, Niesen B, Nicolay S, Jeangros Q, Ballif C 2018 ACS Energy Lett. 3 2052

    [68]

    Nejand A B, Ritzer D B, Hu H, Schackmar F, Moghadamzadeh S, Feeney T, Singh R, Laufer F, Schmager R, Azmi R, Kaiser M, Abzieher T, Gharibzadeh S, Ahlswede E, Lemmer U, Richards B S, Paetzold U W 2022 Nat. Energy 7 620

    [69]

    Choi Y J, Lim S Y, Park J H, Ji S G, Kim J Y. 2023 ACS Energy Lett. 8 3141

    [70]

    Zhu Z J, Mao K T, Xu J X 2021 J. Energy chem. 58 219

    [71]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130

    [72]

    Brinkmann K O, Becker T, Zimmermann F, Kreusel C, Gahlmann T, Theisen M, Haeger T, Olthof S, Tückmantel C, Günster M, Maschwitz T, Göbelsamnn F, Koch C, Hertel D, Caprioglio P, PeñA-Camargo F, Perdigón-Toro L, Al-Ashouri A, Merten L, Hinderhofer A, Gomell L, Zhang S, Schreiber F, Albrecht S, Meerholz K, Neher D, Stolterfoht M, Riedl T 2022 Nature 604 280

    [73]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095

    [74]

    Isikgor F H, Maksudov T, Chang X, Adilbekva B, Ling Z H, Hadmojo W T, Lin Y B, Anthopoulos T D 2022 ACS Energy Lett. 7 4469

    [75]

    Mcmeekin D P, Mahesh S, Noel N K, Klug M T, Lim J C, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387

    [76]

    Wang J K, Zardetto V, Datta K, Zhang D, Wienk M M, Janssen R A J 2020 Nat. Commun. 11 5254

    [77]

    Xiao K, Wen J, Han L, Lin R X, Gao Y, Gu S, Zang Y P, Nie Y F, Zhu J, Xu J, Tan H R 2020 ACS Energy Lett. 5 2819

    [78]

    Wang Z W, Zeng L W, Zhu T, Chen H, Chen B, Kubicki D J, Balvanz A, Li C W, Maxwell A, Ugur E, Reis R D, Cheng M, Yang G, Subedi B, Luo D Y, Hu J H, Wang J K, Teale S, Mahesh S, Wang S S, Hu S Y, Jung E D, Wei M Y, Park S M, Grater L, Aydin E, Song Z N, Podraza N J, Lu Z H, Huang J S, Dravid V P, Wolf D S, Yan Y F, Grätzel M, Kanatzidis M G, Sargent E H 2023 Nature 618 74

    [79]

    Wang J K, Zeng L W, Zhang D, Maxwell A, Chen H, Datta K, Caiazzo A, Remmerswaal W H M, Schipper N R M, Chen Z H, Ho K, Dasgupta A, Kusch G, Ollearo R, Bellini L, Hu S F, Wang Z W, Li C W, Teale S, Grater L, Chen B, Wienk M M, Oliver R A, Snaith H J, Janssen R A J, Sargent E H 2023 Nat. Energy 9 70

    [80]

    Zheng J H, Wang G L, Duan W Y, Mahmud M A, Yi H M, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003

    [81]

    Heydarian M, Heydarian M, Bett A J, Bivour M, Schindler F, Hermle M, Schubert M C, Schulze P S C, Borchert J, Glunz S W 2023 ACS Energy Lett. 8 4186

    [82]

    Xu F Z, Aydin E, Liu J, Ugur E, Harrison G T, Xu L J, Vishal B, Yildirim B K, Wang M C, Ali R, Subbiah A S, Yazmaciyan A, Zhumagali S, Yan W B, Gao Y J, Song Z M, Li C W, Fu S, Chen B, UR Rehman A U, Babics M, Razzaq A, Bastiani D M, Allen T G, Schwiingenschlögl U, Yan Y F, Lquai F, Sargent E H, Wolf S D 2024 Joule 8 224

    [83]

    Li F M, Wu D, Shang L, Xia R, Zhang H R, Huang Z X, Gong J, Mao L, Zhang H, SUN Y Q, Yang T, Sun X G, Feng Z Q, Liu M Z 2024 Adv. Mater. 36 2311595

    [84]

    Hu H, An S X, Li Y, Orooji S, Singh R, Schackmar F, Laufer F, Jin Q H, Feeney T, Diercks A, Gota F, Moghadamzadeh S, Pan T, Rienäcker M, Peibst R, Nejand B A, Paetzold U W 2024 Energy & Environ. Sci. 17 2800

    [85]

    Liu S C, Lu Y, Yu C, Li J, Luo R J, Guo R, Liang H M, Jia X K, Guo X, Wang Y D, Zhou Q L, Wang X, Yang S F, Sui M L, Müller-Buschbaum P, Hou Y 2024 Nature 628 306

    [86]

    Guo Y X, Du S J, Hu X Z, Li G, Yu Z X, Guan H L, Wang S X, Jia P, Zhou H, Li C, Ke W J, Fang G J 2024 Nano Energy 126 109612

    [87]

    Su S Q, Ying Z Q, Chen X K, Li X, Yang X, Ye J C 2024 Acta Physica Sinica 45 23 (in Chinese) [苏诗茜,应智琴,陈邢凯,李 鑫,杨 熹,叶继春 2024 太阳能学报 45 23]

    [88]

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401 (in Chinese) [崔兴华,许巧静,石标,侯福华,赵颖,张晓丹 2020 69 207401

    [89]

    Yang H D, Chen W J, Yu Y, Shen Y X, Yang H Y, Li X Q, Zhang B, Chen H Y, Cheng Q R, Zhang Z C, Qin W, Chen J D, Tang J X, Li Y W, Li Y F 2023 Adv. Mater. 35 2208604

    [90]

    Eggimann H J, Patel J B, Johnston M B, Herz L M 2020 Nat. Commun.11 5525

    [91]

    An S C, Chen P R, Hou F H, Wang Q, Pan H, Chen X L, Lu X N, Zhao Y, Huang Q, Zhang X D 2020 Solar Energy 196 409

    [92]

    Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Ed. 62 e202216668

    [93]

    Luo X H, Wu T H, Wang Y B, Lin X S, Su H Z, Han Q F, Han L Y 2021 Sci. China Chem. 64 218

    [94]

    Reichmuth S K, Siefer G, Schachtner M, Mühleis M, Hohl-Ebinger J, Glunz S W 2020 IEEE J. Photovolt. 10 1076

  • [1] Yang Jing, Han Xiao-Jing, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Xu Sheng-Zhi, Zhao Ying, Zhang Xiao-Dan. Preparation of wide-bandgap perovskite thin films by propylamine hydrochloride assisted gas quenching method. Acta Physica Sinica, doi: 10.7498/aps.73.20240561
    [2] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20230357
    [3] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, doi: 10.7498/aps.72.20222019
    [4] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, doi: 10.7498/aps.70.20202016
    [5] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, doi: 10.7498/aps.69.20200822
    [6] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, doi: 10.7498/aps.68.20191042
    [7] Chen Liang, Zhang Li-Wei, Chen Yong-Sheng. Progress in Pb-free and less-Pb organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.67.20171956
    [8] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, doi: 10.7498/aps.67.20172779
    [9] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038404
    [10] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038805
    [11] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, doi: 10.7498/aps.63.218801
    [12] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, doi: 10.7498/aps.63.028803
    [13] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, doi: 10.7498/aps.62.036102
    [14] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, doi: 10.7498/aps.62.198801
    [15] Yu Huang-Zhong. Progress in the blend stacked structure of organic solar cells. Acta Physica Sinica, doi: 10.7498/aps.62.027201
    [16] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, doi: 10.7498/aps.61.168201
    [17] Yu Huang-Zhong, Wen Yuan-Xin. Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, doi: 10.7498/aps.60.038401
    [18] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, doi: 10.7498/aps.54.1919
    [19] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, doi: 10.7498/aps.54.5943
    [20] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, doi: 10.7498/aps.54.53
Metrics
  • Abstract views:  106
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  13 November 2024

/

返回文章
返回
Baidu
map