-
The ability to undercool and solidification mechanism of liquid quinary Ni40Zr28.5Ti16.5Al10Cu5 alloy are investigated by electromagnetic levitation (EML) and drop tube (DT) technique. Under the EML condition, the maximum undercooling of levitated alloy can reach up to 290 K (0.21TL). Under the DT condition, the alloy achieves higher undercooling than EML, and solidifies finally into metallic glass. At lower undercooling, the solidification structure of the alloy is composed of primary Ni3Ti phase, secondary Ni10Zr7 phase and eutectic (Ni10Zr7+Ni21Zr8) phase. With the rise of undercooling, the solidification structure displays the following evolution events: phase morphology refinement, primary phase inhibition, phase number reduction, and amorphous phase formation. By using the high-speed cinematography technique, three nucleation modes are distinctly observed on the levitated alloy melt surface at the beginning of solidification, that is, single-point nucleation, multi-point nucleation and annular nucleation. The levitation state corresponding to single-point mode nucleation is relatively stable, and the alloy undercooling is also relatively low. The annular nucleation only occursin the case with high rotation speed, and the undercooling is greater than 208 K. The discrepancy between nucleation modes is due to the He gas flow for forced cooling. The theoretical calculations indicate that the alloy droplets achieve high undercoolingand large cooling rate under the DT condition. The experimental results show that when the droplet diameter decreases to 498 μm, the amorphous phase begins to appear in the alloy particles. It is noteworthy that the amorphous phase is preferentially formed inside the droplet, but not on the outer surface. The morphology of solidification structure reveals that different regions of the droplet have various local undercoolings, which result in the distribution characteristics of amorphous phase. The volume fraction of amorphous phase increases linearly with the decrease of particle diameter. When the droplet diameter decreases to 275 μm, the alloy droplets are completely frozen into glassy particles. The average eutecticspacing values are also measured at different alloy undercoolings. Compared with the classical binary eutectic growth model, the experimental eutectic growth law exhibits a large deviation in index. This indicates that the eutectic growth in multicomponent alloys displays more complex kinetic characteristics. -
Keywords:
- electromagnetic levitation /
- drop tube /
- undercooling /
- rapid solidification
[1] Zhao P, Heinrich J C, Poirier D R 2005 Int. J. Numer. Meth. Fluids 49 233Google Scholar
[2] Sánchez Lamazares J L, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B 2008 Appl. Phys. Lett. 92 4358
[3] Wu M, Liu T, Dong M, Sun J M, Dong S L, Qiang W 2017 J. Appl. Phys. 121 064901Google Scholar
[4] Lü P, Wang H P 2017 Scr. Mater. 137 31Google Scholar
[5] Chen F, Zhang T Q, Wang J, Zhang L T, Zhou G F 2015 J. Alloy. Compd. 640 375
[6] 翟秋亚, 杨扬, 徐锦锋, 郭学锋 2007 56 6118Google Scholar
Zhai Q Y, Yang Y, Xu J F, Guo X F 2007 Acta Phys. Sin. 56 6118Google Scholar
[7] Haein C Y, Xu D H, William L J 2003 Appl. Phys. Lett. 82 1030Google Scholar
[8] Duwez P, Willens R H, Klement J W 1960 J. Appl. Phys. 31 1137
[9] 沙莎, 王伟丽, 吴宇昊, 魏炳波 2018 67 046402Google Scholar
Sha S, Wang W L, Wu Y H, Wei B 2018 Acta Phys. Sin. 67 046402Google Scholar
[10] Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, Vu Van Q, Majérus O, Benmore C J, Weber R, Martin C M, Hennet L 2008 Science 322 566Google Scholar
[11] Kavouras A, Krammer G 2003 Rev. Sci. Instrum. 74 4468Google Scholar
[12] Baer S, Andrade M A, Esen C, Adamowski J C, Schweiger G, Ostendorf A 2011 Rev. Sci. Instrum. 82 105111Google Scholar
[13] Wall J J, Weber R, Kim J, Liaw P K, Choo H 2007 Mater. Sci. Eng. A 445 219
[14] Skinner L B, Benmore C J, Weber J K R, Du J, Neuefeind J, Tumber S K, Parise1 J B 2014 Phys. Rev. Lett. 112 157801Google Scholar
[15] Lan S, Blodgett M, Kelton K F, Ma J L, Fan J, Wang X L 2016 Appl. Phys. Lett. 108 831
[16] 杨尚京, 王伟丽, 魏炳波 2015 64 056401Google Scholar
Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401Google Scholar
[17] Royer Z L, Tackes C, Lesar R, Napolitano R E 2013 J. Appl. Phys. 113 214901Google Scholar
[18] Lee J, Rodriguez J E, Hyers R W, Matson D M 2015 Metall. Mater. Trans. B 46 2470Google Scholar
[19] Cao L, Cochrane R F, Mullis A M 2015 Intermetallics 60 33Google Scholar
[20] Xu D, Duan G, Johnson W L, Garland C 2004 Acta Mater. 52 3493Google Scholar
[21] Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231Google Scholar
[22] Wang W L, Li Z Q, Wei B 2011 Acta Mater. 59 5482Google Scholar
[23] Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) 8−2
[24] Inoue A 2000 Acta Mater. 48 279Google Scholar
[25] Jackson K A, Hunt J D 1988 Dyna. Curv. Front. 236363
[26] Kurz W, Trivedi R 1991 Metall. Trans. A 22 3051Google Scholar
-
图 8 自由落体条件下不同直径合金液滴的凝固组织形貌 (a) 957 μm直径; (b) A区放大; (c) B区放大(d) 428 μm直径; (e) C区放大; (f) D区放大
Figure 8. Microstructural morphology of solidified alloy droplets with different diameters.(a) 957 μm diameter; (b) Enlarged A in (a); (c) Enlarged B in (a)(d) 428 μm diameter; (b) Enlarged C in (d); (c) Enlarged D in (d)
表 1 理论计算用热物性参数[23]
Table 1. Physical parameters used in calculations
物理参数 数值 初始温度, T0/K 1500 环境温度, Ti/K 298 热导率, κ/W·m–1·K–1 65.4 液相线温度, TL/K 1400 Stefan-Boltzmann常数, σSB/W·m–1·K–1 5.67 × 10–8 熔体密度, ρ/kg·m–3 6.15 × 103 位置参数, r/r0 0.1—1.0 熔体热辐射系数, εh 0.2 熔体比热, Cp, /J·kg–1·K–1 601 -
[1] Zhao P, Heinrich J C, Poirier D R 2005 Int. J. Numer. Meth. Fluids 49 233Google Scholar
[2] Sánchez Lamazares J L, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B 2008 Appl. Phys. Lett. 92 4358
[3] Wu M, Liu T, Dong M, Sun J M, Dong S L, Qiang W 2017 J. Appl. Phys. 121 064901Google Scholar
[4] Lü P, Wang H P 2017 Scr. Mater. 137 31Google Scholar
[5] Chen F, Zhang T Q, Wang J, Zhang L T, Zhou G F 2015 J. Alloy. Compd. 640 375
[6] 翟秋亚, 杨扬, 徐锦锋, 郭学锋 2007 56 6118Google Scholar
Zhai Q Y, Yang Y, Xu J F, Guo X F 2007 Acta Phys. Sin. 56 6118Google Scholar
[7] Haein C Y, Xu D H, William L J 2003 Appl. Phys. Lett. 82 1030Google Scholar
[8] Duwez P, Willens R H, Klement J W 1960 J. Appl. Phys. 31 1137
[9] 沙莎, 王伟丽, 吴宇昊, 魏炳波 2018 67 046402Google Scholar
Sha S, Wang W L, Wu Y H, Wei B 2018 Acta Phys. Sin. 67 046402Google Scholar
[10] Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, Vu Van Q, Majérus O, Benmore C J, Weber R, Martin C M, Hennet L 2008 Science 322 566Google Scholar
[11] Kavouras A, Krammer G 2003 Rev. Sci. Instrum. 74 4468Google Scholar
[12] Baer S, Andrade M A, Esen C, Adamowski J C, Schweiger G, Ostendorf A 2011 Rev. Sci. Instrum. 82 105111Google Scholar
[13] Wall J J, Weber R, Kim J, Liaw P K, Choo H 2007 Mater. Sci. Eng. A 445 219
[14] Skinner L B, Benmore C J, Weber J K R, Du J, Neuefeind J, Tumber S K, Parise1 J B 2014 Phys. Rev. Lett. 112 157801Google Scholar
[15] Lan S, Blodgett M, Kelton K F, Ma J L, Fan J, Wang X L 2016 Appl. Phys. Lett. 108 831
[16] 杨尚京, 王伟丽, 魏炳波 2015 64 056401Google Scholar
Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401Google Scholar
[17] Royer Z L, Tackes C, Lesar R, Napolitano R E 2013 J. Appl. Phys. 113 214901Google Scholar
[18] Lee J, Rodriguez J E, Hyers R W, Matson D M 2015 Metall. Mater. Trans. B 46 2470Google Scholar
[19] Cao L, Cochrane R F, Mullis A M 2015 Intermetallics 60 33Google Scholar
[20] Xu D, Duan G, Johnson W L, Garland C 2004 Acta Mater. 52 3493Google Scholar
[21] Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231Google Scholar
[22] Wang W L, Li Z Q, Wei B 2011 Acta Mater. 59 5482Google Scholar
[23] Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) 8−2
[24] Inoue A 2000 Acta Mater. 48 279Google Scholar
[25] Jackson K A, Hunt J D 1988 Dyna. Curv. Front. 236363
[26] Kurz W, Trivedi R 1991 Metall. Trans. A 22 3051Google Scholar
Catalog
Metrics
- Abstract views: 9204
- PDF Downloads: 110
- Cited By: 0