-
Perovskite solar cells have become a research hotspot in the photovoltaic field due to their excellent photoelectric performance and low-cost preparation processes. However, the environmental toxicity of traditional lead-containing perovskite materials and the optimization of device performance remain key issues limiting their commercial application. Numerical simulation methods provide an efficient and cost-effective approach for optimizing perovskite solar cell devices, allowing for rapid material screening and structural parameter optimization, thereby reducing experimental trial-and-error costs.
This study, based on SCAPS-1D, systematically investigates the performance of solar cells with the structure FTO/SnO2/perovskite layer/Cu2O/Au using numerical simulation methods. Seven different lead-free and lead-containing perovskite materials were selected as the light-absorbing layer. By comparative analysis of their photoelectric characteristics, the study explores the impact of perovskite layer thickness, electron transport layer thickness, hole transport layer thickness, interface defect state density, and carrier concentration on device performance. Furthermore, temperature testing and J-V and QE curve analyses were conducted on the optimized perovskite solar cells.The results indicate that excessive thickness of the perovskite layer increases carrier recombination rates, reducing cell efficiency. The optimized Cs2PtI6-based perovskite solar cell exhibits the best performance, with a power conversion efficiency of 27.95%, significantly higher than that of other lead-free and some lead-containing perovskite devices. Under extreme temperature conditions of 600 K, the PCE of Cs2PtI6 remains around 50% of its value at room temperature (300 K). This study reveals the effects of different perovskite materials and device parameters on photovoltaic performance through systematic numerical simulation analysis, providing a theoretical basis for designing efficient and stable perovskite solar cells.-
Keywords:
- Perovskite solar cells /
- Numerical simulation /
- Parameter optimization /
- SCAPS
-
[1] Prasanna J L,Kumar A,Ravi Kumar M,Gayathri K,Santhosh C,Kumer S,Mohan E,Udayakumar S 2024International Journal of Energy Research.20243942154
[2] Zhang N,Mi Q Y,Deng J J,Zhao X J 2024China Soft Science. 2 1(in Chinese)[张娜米倩玉邓嘉纬赵晓军2024中国软科学2 1]
[3] Soni A,Bhamu K,Sahariya J 2020Journal of Alloys and Compounds. 817 152758
[4] Maho A,Lobet M,Daem N,Piron P,Spronck G,Loicq J,Cloots R,Colson P,Henrist C,Dewalque J 2021ACS Applied Energy Materials. 4 1108
[5] Wang Y D, Duan J L, Yang X Y, Liu L Q, Zhao L L, Tang Q W 2020Nano Energy. 69 104418
[6] Brenner T,Egger D,Kronik L,Hodes G,Cahen D 2016Nature Reviews Materials. 1 1
[7] Miyata A,Mitioglu A,Plochocka P,Portugall O,Wang J,Stranks S,Snaith H,Nicholas R 2015Nature Physics.11 582
[8] Song Z N,McElvany C,Phillips A,Celik I,Krantz P,Watthage S,Liyanage G,Apul D,Heben M 2017Energy& Environmental Science. 10 1297
[9] Kim Y,Cho H,Heo J,Kim T,Myoung N,Lee C,Im S,Lee T 2015Advanced materials.27 1248
[10] Dou L T,Yang Y,You J B,Hong Z R,Chang W H,Li G,Yang Y 2014Nature communications. 5 5404
[11] Kojima A,Teshima K,Shira Y,Miyasaka T 2009Journal of the american chemical society.131 6050
[12] Bhavsar K,Lapsiwala P 2021Semicond Phys Quantum Electron Optoelectron.24 341
[13] Hossain M,Toki G,Alam I,Pandey R,Samajdar D,Rahman M,Islam M,Bencherif M,Madan J,Mohammed M 2023New Journal of Chemistry. 47 4801
[14] Gatti T,Menna E,Meneghetti M,Maggini M,Petrozza A,Lamberti F 2017Nano Energy.41 84
[15] Kim H,Lee C,Im J,Lee K,Moehl T,Marchioro A,Moon S,Baker R,Yum J,Moser J,Gratzel M,Park N 2012Scientific reports.2 591
[16] Uddin M,Mashud M,Toki G,Pandey R,Zulfiqar M,Saidani O,Chandran K,Ouladsmane M,Hossain M 2024Journal of Optics. 53 3726
[17] Singh A,Srivastava S,Mahapatra A,Baral J,Pradhan B 2021Optical Materials.117111193
[18] Hao L S,Li T,Ma X X,Wu J,Qiao L X,Wu X F,Hou G Y,Pei H N,Wang X b,Zhang X Y 2021Optical and Quantum Electronics.53 1
[19] Rai S,Pandey B,Dwivedi D 2020Optical Materials.100 109631
[20] Mustafa G,Younas B,Saba S,Elqahtani Z,Alwadai N,Aftab S 2024RSC advances. 14 18957
[21] Hossain M,Arnab A,Das R,Hossain K,Rubel M,Rahman M,Bencherif H,Emetere M,Mohammed M,Pandey R 2022RSC advances. 12 35002
[22] Amjad A,Qamar S,Zhao C C,Fatima K,Sultan M,Akhter Z 2023RSC advances. 13 23211
[23] Ahmad W,Noman M,Jan S,Khan A 2023Royal Society Open Science.10 221127
[24] Schulte L,White W,Renna L,Ardo S 2021Joule. 5 2380
[25] ASiddique A,Helal S,Haque M 2024Journal of Ovonic Research, 20187
[26] Subudhi P,Punetha D 2023Scientific Reports. 13 19485
[27] Jayan K D,Sebastian V,Kurian J 2021Solar Energy.221 99
[28] Mohandes A,Moradi M,Nadgaran H 2021Optical and Quantum Electronics.53 1
[29] Salah M,Abouelatta M,Shaker A,Hassan K, Saeed A 2019Semiconductor Science and Technology.34 115009.
计量
- 文章访问数: 45
- PDF下载量: 0
- 被引次数: 0