-
近年来, 二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)由于其出色的电学和光学特性在光电探测领域被广泛研究. 相比于报道较多的场效应晶体管型以及异质结型器件, 同质结器件在光电探测方面具有独特优势. 本文将聚焦基于TMDCs同质结的光电探测器的研究, 首先介绍同质结光电器件的主要工作原理, 然后以载流子调控方式为分类依据总结TMDCs同质结的几种制备方法及其获得的电学和光电性能. 此外, 本文还对同质结器件中光生载流子的输运过程进行具体分析, 阐述横向p-i-n结构具有超快光电响应速度的原因. 最后对基于TMDCs同质结的光电探测器的研究进行总结与前景展望.In recent years, two-dimensional transition metal chalcogenides (TMDCs) have been widely studied in the field of photodetection due to their excellent electronic and optical properties. Compared with the more reported field-effect transistor and heterojunction devices, homojunction devices have unique advantages in photodetection. This article focuses on the researches of photodetectors based on the homojunctions of TMDCs. First, the working principle of homojunction optoelectronic device is introduced. Then, the reported TMDCs based homojunctions are classified and summarized according to the adopted carrier modulation techniques. In addition, this article also specifically analyzes the transport process of photogenerated carriers in homojunction device, and explains why the lateral p-i-n homojunction exhibits fast photoresponse speed. Finally, the research progress of the TMDCs based homojunction photodetectors is summarized and the future development is also prospected.
-
Keywords:
- photodetector /
- transition metal dichalcogenides /
- homojunction /
- photovoltaic effect
[1] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780
Google Scholar
[2] Xie C, Mak C, Tao X, Yan F 2017 Adv. Funct. Mater. 27 1603886
Google Scholar
[3] Wang G, Zhang Y, You C, Liu B, Yang Y, Li H, Cui A, Liu D, Yan H 2018 Infrared Phys. Technol. 88 149
Google Scholar
[4] Huo N, Konstantatos G 2018 Adv. Mater. 30 e1801164
Google Scholar
[5] Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Sci. 7 1901637
Google Scholar
[6] Han J, He M, Yang M, Han Q, Wang F, Zhong F, Xu M, Li Q, Zhu H, Shan C, Hu W, Chen X, Wang X, Gou J, Wu Z, Wang J 2020 Light-Sci. Appl. 9 167
Google Scholar
[7] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[8] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[9] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695
Google Scholar
[10] Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M Jr 2013 Phys. Rev. Lett. 111 106801
Google Scholar
[11] Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664
Google Scholar
[12] Mak K F, Shan J 2016 Nat. Photonics 10 216
Google Scholar
[13] Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116
Google Scholar
[14] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[15] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
Google Scholar
[16] Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X 2015 Nano Lett. 15 709
Google Scholar
[17] Lv R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56
Google Scholar
[18] Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744
Google Scholar
[19] Chen J Y, Liu L, Li C X, Xu J P 2019 Chin. Phys. Lett. 36 037301
Google Scholar
[20] Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W, Zhou P, Hu W 2021 Nat. Electron. 4 357
Google Scholar
[21] Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184
Google Scholar
[22] 胡伟达, 李庆, 陈效双, 陆卫 2019 68 120701
Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701
Google Scholar
[23] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74
Google Scholar
[24] Wu C C, Jariwala D, Sangwan V K, Marks T J, Hersam M C, Lauhon L J 2013 J. Phys. Chem. Lett. 4 2508
Google Scholar
[25] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497
Google Scholar
[26] Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504
Google Scholar
[27] Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785
Google Scholar
[28] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524
Google Scholar
[29] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024
Google Scholar
[30] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y, Duan X 2014 Nano Lett. 14 5590
Google Scholar
[31] Esmaeili-Rad M R, Salahuddin S 2013 Sci. Rep. 3 2345
Google Scholar
[32] Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y, Xu S 2016 Nano Energy 23 89
Google Scholar
[33] He D, Pan Y, Nan H, Gu S, Yang Z, Wu B, Luo X, Xu B, Zhang Y, Li Y, Ni Z, Wang B, Zhu J, Chai Y, Shi Y, Wang X 2015 Appl. Phys. Lett. 107 183103
Google Scholar
[34] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292
Google Scholar
[35] Novoselov, K. S, Mishchenko, A., Carvalho, Ne to, Castro. A H 2016 Science 353 aac9439
Google Scholar
[36] Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111
Google Scholar
[37] Yang Y, Huo N, Li J 2018 J. Mater. Chem. C 6 11673
Google Scholar
[38] Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
Google Scholar
[39] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268
Google Scholar
[40] Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257
Google Scholar
[41] Groenendijk D J, Buscema M, Steele G A, Michaelis de Vasconcellos S, Bratschitsch R, van der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 5846
Google Scholar
[42] Memaran S, Pradhan N R, Lu Z, Rhodes D, Ludwig J, Zhou Q, Ogunsolu O, Ajayan P M, Smirnov D, Fernandez-Dominguez A I, Garcia-Vidal F J, Balicas L 2015 Nano Lett. 15 7532
Google Scholar
[43] Wang Z, Wang F, Yin L, Huang Y, Xu K, Wang F, Zhan X, He J 2016 Nanoscale 8 13245
Google Scholar
[44] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P 2017 Nat. Nanotechnol. 12 1124
Google Scholar
[45] Lee H S, Lim J Y, Yu S, Jeong Y, Park S, Oh K, Hong S, Yang S, Lee C H, Im S 2019 Adv. Opt. Mater. 7 1900768
Google Scholar
[46] Lim J Y, Pezeshki A, Oh S, Kim J S, Lee Y T, Yu S, Hwang D K, Lee G H, Choi H J, Im S 2017 Adv. Mater. 29 1701798
Google Scholar
[47] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575
Google Scholar
[48] Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602
Google Scholar
[49] Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693
Google Scholar
[50] Baeumer C, Saldana-Greco D, Martirez J M P, Rappe A M, Shim M, Martin L W 2015 Nat. Commun. 6 6136
Google Scholar
[51] Chen J W, Lo S T, Ho S C, Wong S S, Vu T H, Zhang X Q, Liu Y D, Chiou Y Y, Chen Y X, Yang J C, Chen Y C, Chu Y H, Lee Y H, Chung C J, Chen T M, Chen C H, Wu C L 2018 Nat. Commun. 9 3143
Google Scholar
[52] Wu G, Wang X, Chen Y, Wu S, Wu B, Jiang Y, Shen H, Lin T, Liu Q, Wang X, Zhou P, Zhang S, Hu W, Meng X, Chu J, Wang J 2020 Adv. Mater. 32 e1907937
Google Scholar
[53] Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J, Wang J 2020 Nat. Electron. 3 43
Google Scholar
[54] Lü L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331
Google Scholar
[55] Liu T, Xiang D, Zheng Y, Wang Y, Wang X, Wang L, He J, Liu L, Chen W 2018 Adv. Mater. 30 e1804470
Google Scholar
[56] Wu E, Xie Y, Zhang J, Zhang H, Hu X, Liu J, Zhou C, Zhang D 2019 Sci. Adv. 5 eaav3430
Google Scholar
[57] Wu E, Xie Y, Wang S, Zhang D, Hu X, Liu J 2020 Nano Res. 13 3445
Google Scholar
[58] Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T, Yoo W J 2014 ACS Nano 8 9332
Google Scholar
[59] Li H M, Lee D, Qu D, Liu X, Ryu J, Seabaugh A, Yoo W J 2015 Nat. Commun. 6 6564
Google Scholar
[60] Sun M, Xie D, Sun Y, Li W, Ren T 2018 Nanotechnology 29 015203
Google Scholar
[61] Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D, Liu J 2018 ACS Appl. Mater. Interfaces 10 26533
Google Scholar
[62] Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y, Lee S, Yu H Y, Choi C, Park J H 2016 Adv. Mater. 28 4824
Google Scholar
[63] Tang Y, Wang Z, Wang P, Wu F, Wang Y, Chen Y, Wang H, Peng M, Shan C, Zhu Z, Qin S, Hu W 2019 Small 15 e1805545
Google Scholar
[64] Sun J, Wang Y, Guo S, Wan B, Dong L, Gu Y, Song C, Pan C, Zhang Q, Gu L, Pan F, Zhang J 2020 Adv. Mater. 32 e1906499
Google Scholar
[65] Wi S, Kim H, Chen M, Nam H, Guo L J, Meyhofer E, Liang X 2014 ACS Nano 8 5270
Google Scholar
[66] Xie Y, Wu E, Hu R, Qian S, Feng Z, Chen X, Zhang H, Xu L, Hu X, Liu J, Zhang D 2018 Nanoscale 10 12436
Google Scholar
[67] Mitta S B, Ali F, Yang Z, Moon I, Ahmed F, Yoo T J, Lee B H, Yoo W J 2020 ACS Appl. Mater. Interfaces 12 23261
Google Scholar
[68] Zhang Y, Ma K, Zhao C, Hong W, Nie C, Qiu Z J, Wang S 2021 ACS Nano 15 4405
Google Scholar
[69] Chen J, Wang Q, Sheng Y, Cao G, Yang P, Shan Y, Liao F, Muhammad Z, Bao W, Hu L, Liu R, Cong C, Qiu Z J 2019 ACS Appl. Mater. Interfaces 11 43330
Google Scholar
[70] Aftab S, Khan M F, Gautam P, Noh H, Eom J 2019 Nanoscale 11 9518
Google Scholar
[71] Aftab S, Samiya, Rabia, Yousuf S, Khan M U, Khawar R, Younus A, Manzoor M, Iqbal M W, Iqbal M Z 2020 Nanoscale 12 15687
Google Scholar
[72] Zhang M L, Zou X M, Liu X Q 2020 Chin. Phys. Lett. 37 118501
Google Scholar
[73] Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603
Google Scholar
[74] Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853
Google Scholar
[75] Jin Z, Cai Z, Chen X, Wei D 2018 Nano Res. 11 4923
Google Scholar
[76] Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, Ward T Z, Rack P D 2017 Nano Res. 11 722
Google Scholar
[77] Kang W M, Lee S, Cho I T, Park T H, Shin H, Hwang C S, Lee C, Park B G, Lee J H 2018 Solid-State Electron. 140 2
Google Scholar
[78] Bolshakov P, Smyth C M, Khosravi A, Zhao P, Hurley P K, Hinkle C L, Wallace R M, Young C D 2019 ACS Appl. Electron. Mater. 1 210
Google Scholar
[79] Hoffman A N, Stanford M G, Sales M G, Zhang C, Ivanov I N, McDonnell S J, Mandrus D G, Rack P D 2019 2D Mater. 6 045024
Google Scholar
[80] Singh A K, Andleeb S, Singh J, Dung H T, Seo Y, Eom J 2014 Adv. Funct. Mater. 24 7125
Google Scholar
[81] Iqbal M W, Iqbal M Z, Khan M F, Shehzad M A, Seo Y, Eom J 2015 Nanoscale 7 747
Google Scholar
[82] Wang S Y, Ko T S, Huang C C, Lin D Y, Huang Y S 2014 Jpn. J. Appl. Phys. 53 04EH07
Google Scholar
[83] Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, Sun Y, Sinclair R, Chang J, Tongay S, Wu J 2014 Nano Lett. 14 6976
Google Scholar
[84] Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S 2016 ACS Nano 10 2128
Google Scholar
[85] Jin Y, Keum D H, An S J, Kim J, Lee H S, Lee Y H 2015 Adv. Mater. 27 5534
Google Scholar
[86] Svatek S A, Antolin E, Lin D-Y, Frisenda R, Reuter C, Molina-Mendoza A J, Muñoz M, Agraït N, Ko T-S, de Lara D P, Castellanos-Gomez A 2017 J. Mater. Chem. C 5 854
Google Scholar
[87] Noh J Y, Kim H, Kim Y S 2014 Phys. Rev. B 89 205417
Google Scholar
[88] Haldar S, Vovusha H, Yadav M K, Eriksson O, Sanyal B 2015 Phys. Rev. B 92 235408
Google Scholar
[89] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X 2013 Nat. Commun. 4 2642
Google Scholar
[90] Cui Z, Ke X, Li E, Wang X, Ding Y, Liu T, Li M, Zhao B 2018 Opt. Quantum. Electron. 50 1
Google Scholar
[91] Zhang X, Liao Q, Liu S, Kang Z, Zhang Z, Du J, Li F, Zhang S, Xiao J, Liu B, Ou Y, Liu X, Gu L, Zhang Y 2017 Nat. Commun. 8 15881
Google Scholar
[92] Zhang X, Liao Q, Kang Z, Liu B, Ou Y, Du J, Xiao J, Gao L, Shan H, Luo Y, Fang Z, Wang P, Sun Z, Zhang Z, Zhang Y 2019 ACS Nano 13 3280
Google Scholar
[93] Sun M, Xie D, Sun Y, Li W, Teng C, Xu J 2017 Sci. Rep. 7 4505
Google Scholar
[94] Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P, Sow C H 2014 ACS Nano 8 6334
Google Scholar
[95] Xu Z-Q, Zhang Y, Wang Z, Shen Y, Huang W, Xia X, Yu W, Xue Y, Sun L, Zheng C, Lu Y, Liao L, Bao Q 2016 2D Mater. 3 041001
Google Scholar
[96] He Y, Sobhani A, Lei S, Zhang Z, Gong Y, Jin Z, Zhou W, Yang Y, Zhang Y, Wang X, Yakobson B, Vajtai R, Halas N J, Li B, Xie E, Ajayan P 2016 Adv. Mater. 28 5126
Google Scholar
[97] Kim K S, Ji Y J, Kim K H, Choi S, Kang D H, Heo K, Cho S, Yim S, Lee S, Park J H, Jung Y S, Yeom G Y 2019 Nat. Commun. 10 4701
Google Scholar
[98] Tan C, Wang H, Zhu X, Gao W, Li H, Chen J, Li G, Chen L, Xu J, Hu X, Li L, Zhai T 2020 ACS Appl. Mater. Interfaces 12 44934
Google Scholar
[99] Wang Z, Chen Y, Wu P, Ye J, Peng M, Yan Y, Zhong F, He T, Wang Y, Xu M, Zhang K, Hu Z, Li Q, Zhang L, Wang F, Wang P 2020 Infrared Phys. Technol. 106 103272
Google Scholar
[100] Fang H, Hu W 2017 Adv. Sci. 4 1700323
Google Scholar
[101] Jiang J, Ling C, Xu T, Wang W, Niu X, Zafar A, Yan Z, Wang X, You Y, Sun L, Lu J, Wang J, Ni Z 2018 Adv. Mater. 30 1804332
Google Scholar
[102] Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100
Google Scholar
[103] Lucovsky G, Emmons R B 1965 Appl. Opt. 4 697
Google Scholar
-
图 2 基于电场调控的TMDCs同质结光电探测器 (a)分离栅极调控的同质结示意图; (b)不同栅压配置下的输出特性; (c) PN配置下器件的光响应[41]; (d)铁电极化调控的同质结示意图; (e)不同光功率下的Isc 和 Voc; (f)光电流的响应时间[52]; (g) UV诱导电场调控的同质结示意图; (h)输出特性随写入电压的变化; (i)不同光功率下的动态光响应[56]
Fig. 2. TMDCs homojunction photodetectors based on electric field regulation: (a) Schematic diagram of homojunction controlled by local gates; (b) output characteristics under different gate voltage configurations; (c) photoresponse of the device in PN configuration[41]; (d) schematic diagram of homojunction defined by ferroelectric polarization; (e) Isc and Voc at different laser powers; (f) the response time of photocurrent[52]; (g) schematic diagram of homojunction regulated by UV-induced electric field; (h) variation of output characteristics with writing voltage; (i) dynamic responses under different laser powers[56].
图 4 基于SCTD的TMDCs同质结光电探测器 (a)光照下基于AlCl3化学掺杂的同质结示意图与电路图; (b) VG = –40 V时的 ID-VD曲线; (c)不同波长光照下的EQE和D*(VD = 1.5 V, VG = 0, ±40 V)[58]; (d)光照下基于CHF3等离子体处理的垂直同质结光伏效应示意图; (e)暗态和(f)AM1.5 G光照下的J-V曲线[65]; (g)激光诱导WSe2同质结示意图; (h)长时间循环光响应(Vds = 0 V, Vg = 40 V)[69]; (i)基于DUV诱导掺杂的垂直同质结示意图[70]
Fig. 4. TMDCs homojunction photodetectors based on SCTD: (a) Schematic diagram and circuit diagram of homojunction based on chemical doping by AlCl3 under illumination; (b) ID-VD curve at VG = –40 V; (c) EQE and D* under different wavelengths of light (VD = 1.5 V, VG = 0, ± 40 V)[58]; (d) photovoltaic effect of vertical homojunction based on CHF3 plasma treatment under illumination; J-V curves of (e) dark state and (f)AM1.5 G illumination[65]; (g) schematic diagram of laser-induced WSe2 homojunction; (h) Temporal photocurrent response(Vds = 0 V, Vg = 40 V)[69]; (i) schematic diagram of vertical homojunction based on DUV-induced doping[70].
图 5 基于元素替位掺杂、缺陷工程和厚度调制的TMDCs同质结光电探测器 (a)基于元素替位掺杂的同质结示意图与光学图像; (b)栅极电压对光伏性能的调制; (c)不同光功率下的光伏性能(Vg = 0, λ = 660 nm)[86]; (d)基于S空位自修复的单层MoS2横向同质结示意图; (e)光照下的输出特性曲线(λ = 575 nm)[91]; (f) 基于S空位自修复的垂直同质结示意图与光学图像[92]; (g)单层和多层MoS2以及Ti的能带图; (h) MoS2单层-多层结示意图; (i) 470 nm光照下器件的光响应特性[93]
Fig. 5. TMDCs homojunction photodetectors based on element substitution doping, defect engineering and thickness modulation: (a) Schematic diagram and optical image of homojunction based on element substitution doping; (b) modulation of gate voltage on photovoltaic performance; (c) photovoltaic performance under different optical power(Vg = 0, λ = 660 nm)[86]; (d) schematic diagram of single-layer MoS2 lateral homojunction based on S vacancy self-healing; (e) output curve under illumination(λ = 575 nm)[91]; (f) schematic diagram and optical image of vetical homojunction based on S vacancy self-healing[92]; (g) the band diagram of single and multilayer MoS2 and Ti; (h) schematic diagram of the multilayer/monolayer MoS2 junction; (i) photoresponse characteristics of the device under 470 nm illumination[93].
图 7 基于横向p-i-n同质结的超快WSe2光电二极管 (a)器件光学图像; (b)掺杂分布的横截面示意图; (c)Vds = 1 V时的输出特性曲线; (d)零偏和反向偏置状态下响应度和比探测率随入射光功率的变化; (e)光电流响应时间; (f) p-i-n光电二极管的带宽频率响应[68]
Fig. 7. Ultrafast WSe2 photodiode based on lateral p-i-n homojunction: (a) Optical image of the device; (b) cross-sectional schematic diagram of doping distribution; (c) output curve at Vds = 1 V; (d) R and D* as a function of incident light power density under zero bias and reverse bias; (e) the response time of photocurrent; (f) broadband frequency response of the p-i-n photodiode[68].
表 1 基于TMDCs同质结的光电探测器性能对比
Table 1. Performance comparison of photodetectors based on TMDCs homojunctions.
材料 器件结构 载流子调控方式 整流比 理想
因子光源
波长/nm偏置电压
Vpn/V响应度/
mA·W–1比探测率/
Jones响应时间 文献 n型 p型 上升/ms 下降/ms 单层WSe2 横向p-n 正栅压 负栅压 105 1.9 532 2 210 — — — [38] 单层WSe2 横向p-n 正栅压 负栅压 — 2.14 532 –1 0.7 — 10.4 9.8 [41] 多层MoTe2 横向p-n 铁电极化 铁电极化 5×105 2 520 0 5 3×1012 0.03 0.045 [52] 多层MoS2 横向p-n 铁电极化 铁电极化 105 1.7 532 0 15 — 0.01 0.02 [54] 少层MoTe2 横向p-n UV诱导电场 UV诱导电场 103 2.1 532 0 160 — 2 2 [57] 多层MoS2 横向p-n — AuCl3 60 1 (Vg = –40 V) 500 1.5 5070 3×1010 100 200 [58] 少层MoS2 垂直p-n BV AuCl3 100 1.6 655 –1 30 — — — [59] 少层WSe2 横向p-n N2H4 — ~103 — 470 –5 30 6.18×108 2 2 [60] 多层WSe2 横向p-n N2H4 — 105 1.1 635 –5 (Vg = –40 V) 468 2.5×109 4 4 [37] 少层MoSe2 横向p-n PPh3 MoOx (退火) 104 1.2 532 0 1300 — — — [61] 多层WSe2 横向p-n PEI 负栅压 103 1.66 520 0 80 1011 0.2 0.06 [63] 少层WSe2 横向p-n CTAB — 103 1.64 450 –1.5 3×104 1011 7.8 7.7 [64] 多层WSe2 横向p-n — N2O plasma 106 (Vg = –60 V) 3.1 520 1 2490 — 8 30 [66] 多层WSe2 横向p-n — WOx (O2 Plasma) — — 520 1 250 7.7×109 41.8 2289.8 [67] 多层WSe2 横向p-n 正栅压 WOx (laser) — — 633 0 800 — 0.136 0.039 [69] 多层MoTe2 垂直p-n DUV(N2) — 104 1.05 530 0 850 — — — [70] 多层MoTe2 横向p-n DUV(N2) — 2.5×104 ~1 850 0 5500 — 29 38 [71] 少层MoS2 垂直p-n 元素掺杂(Fe) 元素掺杂(Nb) — ~2.5 660 0 25 — 80 80 [86] 单层MoS2 横向n+–n PSS诱导
缺陷修复(n+)—(n) ~150 1.6 575 0 308 — 810 750 [91] 双层MoS2 垂直n+–n PSS诱导
缺陷修复(n+)—(n) 72 1.6 532 0 54.6 — 3100 3800 [92] 多层WSe2 横向p-i-n WSe2–y
(Ar Plasma)WOx(O2 plasma) 106 1.14 450 0 105 2.2×1013 0.000264 0.000552 [68] MoS2 横向单层-多层 — — 103 (Vg = 10 V) 1.95(Vg = 5 V) 470 — 106 7×1010 2 2000 [93] -
[1] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780
Google Scholar
[2] Xie C, Mak C, Tao X, Yan F 2017 Adv. Funct. Mater. 27 1603886
Google Scholar
[3] Wang G, Zhang Y, You C, Liu B, Yang Y, Li H, Cui A, Liu D, Yan H 2018 Infrared Phys. Technol. 88 149
Google Scholar
[4] Huo N, Konstantatos G 2018 Adv. Mater. 30 e1801164
Google Scholar
[5] Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Sci. 7 1901637
Google Scholar
[6] Han J, He M, Yang M, Han Q, Wang F, Zhong F, Xu M, Li Q, Zhu H, Shan C, Hu W, Chen X, Wang X, Gou J, Wu Z, Wang J 2020 Light-Sci. Appl. 9 167
Google Scholar
[7] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[8] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[9] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695
Google Scholar
[10] Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M Jr 2013 Phys. Rev. Lett. 111 106801
Google Scholar
[11] Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664
Google Scholar
[12] Mak K F, Shan J 2016 Nat. Photonics 10 216
Google Scholar
[13] Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116
Google Scholar
[14] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[15] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
Google Scholar
[16] Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X 2015 Nano Lett. 15 709
Google Scholar
[17] Lv R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56
Google Scholar
[18] Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744
Google Scholar
[19] Chen J Y, Liu L, Li C X, Xu J P 2019 Chin. Phys. Lett. 36 037301
Google Scholar
[20] Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W, Zhou P, Hu W 2021 Nat. Electron. 4 357
Google Scholar
[21] Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184
Google Scholar
[22] 胡伟达, 李庆, 陈效双, 陆卫 2019 68 120701
Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701
Google Scholar
[23] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74
Google Scholar
[24] Wu C C, Jariwala D, Sangwan V K, Marks T J, Hersam M C, Lauhon L J 2013 J. Phys. Chem. Lett. 4 2508
Google Scholar
[25] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497
Google Scholar
[26] Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504
Google Scholar
[27] Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785
Google Scholar
[28] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524
Google Scholar
[29] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024
Google Scholar
[30] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y, Duan X 2014 Nano Lett. 14 5590
Google Scholar
[31] Esmaeili-Rad M R, Salahuddin S 2013 Sci. Rep. 3 2345
Google Scholar
[32] Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y, Xu S 2016 Nano Energy 23 89
Google Scholar
[33] He D, Pan Y, Nan H, Gu S, Yang Z, Wu B, Luo X, Xu B, Zhang Y, Li Y, Ni Z, Wang B, Zhu J, Chai Y, Shi Y, Wang X 2015 Appl. Phys. Lett. 107 183103
Google Scholar
[34] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292
Google Scholar
[35] Novoselov, K. S, Mishchenko, A., Carvalho, Ne to, Castro. A H 2016 Science 353 aac9439
Google Scholar
[36] Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111
Google Scholar
[37] Yang Y, Huo N, Li J 2018 J. Mater. Chem. C 6 11673
Google Scholar
[38] Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
Google Scholar
[39] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268
Google Scholar
[40] Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257
Google Scholar
[41] Groenendijk D J, Buscema M, Steele G A, Michaelis de Vasconcellos S, Bratschitsch R, van der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 5846
Google Scholar
[42] Memaran S, Pradhan N R, Lu Z, Rhodes D, Ludwig J, Zhou Q, Ogunsolu O, Ajayan P M, Smirnov D, Fernandez-Dominguez A I, Garcia-Vidal F J, Balicas L 2015 Nano Lett. 15 7532
Google Scholar
[43] Wang Z, Wang F, Yin L, Huang Y, Xu K, Wang F, Zhan X, He J 2016 Nanoscale 8 13245
Google Scholar
[44] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P 2017 Nat. Nanotechnol. 12 1124
Google Scholar
[45] Lee H S, Lim J Y, Yu S, Jeong Y, Park S, Oh K, Hong S, Yang S, Lee C H, Im S 2019 Adv. Opt. Mater. 7 1900768
Google Scholar
[46] Lim J Y, Pezeshki A, Oh S, Kim J S, Lee Y T, Yu S, Hwang D K, Lee G H, Choi H J, Im S 2017 Adv. Mater. 29 1701798
Google Scholar
[47] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575
Google Scholar
[48] Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602
Google Scholar
[49] Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693
Google Scholar
[50] Baeumer C, Saldana-Greco D, Martirez J M P, Rappe A M, Shim M, Martin L W 2015 Nat. Commun. 6 6136
Google Scholar
[51] Chen J W, Lo S T, Ho S C, Wong S S, Vu T H, Zhang X Q, Liu Y D, Chiou Y Y, Chen Y X, Yang J C, Chen Y C, Chu Y H, Lee Y H, Chung C J, Chen T M, Chen C H, Wu C L 2018 Nat. Commun. 9 3143
Google Scholar
[52] Wu G, Wang X, Chen Y, Wu S, Wu B, Jiang Y, Shen H, Lin T, Liu Q, Wang X, Zhou P, Zhang S, Hu W, Meng X, Chu J, Wang J 2020 Adv. Mater. 32 e1907937
Google Scholar
[53] Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J, Wang J 2020 Nat. Electron. 3 43
Google Scholar
[54] Lü L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331
Google Scholar
[55] Liu T, Xiang D, Zheng Y, Wang Y, Wang X, Wang L, He J, Liu L, Chen W 2018 Adv. Mater. 30 e1804470
Google Scholar
[56] Wu E, Xie Y, Zhang J, Zhang H, Hu X, Liu J, Zhou C, Zhang D 2019 Sci. Adv. 5 eaav3430
Google Scholar
[57] Wu E, Xie Y, Wang S, Zhang D, Hu X, Liu J 2020 Nano Res. 13 3445
Google Scholar
[58] Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T, Yoo W J 2014 ACS Nano 8 9332
Google Scholar
[59] Li H M, Lee D, Qu D, Liu X, Ryu J, Seabaugh A, Yoo W J 2015 Nat. Commun. 6 6564
Google Scholar
[60] Sun M, Xie D, Sun Y, Li W, Ren T 2018 Nanotechnology 29 015203
Google Scholar
[61] Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D, Liu J 2018 ACS Appl. Mater. Interfaces 10 26533
Google Scholar
[62] Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y, Lee S, Yu H Y, Choi C, Park J H 2016 Adv. Mater. 28 4824
Google Scholar
[63] Tang Y, Wang Z, Wang P, Wu F, Wang Y, Chen Y, Wang H, Peng M, Shan C, Zhu Z, Qin S, Hu W 2019 Small 15 e1805545
Google Scholar
[64] Sun J, Wang Y, Guo S, Wan B, Dong L, Gu Y, Song C, Pan C, Zhang Q, Gu L, Pan F, Zhang J 2020 Adv. Mater. 32 e1906499
Google Scholar
[65] Wi S, Kim H, Chen M, Nam H, Guo L J, Meyhofer E, Liang X 2014 ACS Nano 8 5270
Google Scholar
[66] Xie Y, Wu E, Hu R, Qian S, Feng Z, Chen X, Zhang H, Xu L, Hu X, Liu J, Zhang D 2018 Nanoscale 10 12436
Google Scholar
[67] Mitta S B, Ali F, Yang Z, Moon I, Ahmed F, Yoo T J, Lee B H, Yoo W J 2020 ACS Appl. Mater. Interfaces 12 23261
Google Scholar
[68] Zhang Y, Ma K, Zhao C, Hong W, Nie C, Qiu Z J, Wang S 2021 ACS Nano 15 4405
Google Scholar
[69] Chen J, Wang Q, Sheng Y, Cao G, Yang P, Shan Y, Liao F, Muhammad Z, Bao W, Hu L, Liu R, Cong C, Qiu Z J 2019 ACS Appl. Mater. Interfaces 11 43330
Google Scholar
[70] Aftab S, Khan M F, Gautam P, Noh H, Eom J 2019 Nanoscale 11 9518
Google Scholar
[71] Aftab S, Samiya, Rabia, Yousuf S, Khan M U, Khawar R, Younus A, Manzoor M, Iqbal M W, Iqbal M Z 2020 Nanoscale 12 15687
Google Scholar
[72] Zhang M L, Zou X M, Liu X Q 2020 Chin. Phys. Lett. 37 118501
Google Scholar
[73] Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603
Google Scholar
[74] Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853
Google Scholar
[75] Jin Z, Cai Z, Chen X, Wei D 2018 Nano Res. 11 4923
Google Scholar
[76] Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, Ward T Z, Rack P D 2017 Nano Res. 11 722
Google Scholar
[77] Kang W M, Lee S, Cho I T, Park T H, Shin H, Hwang C S, Lee C, Park B G, Lee J H 2018 Solid-State Electron. 140 2
Google Scholar
[78] Bolshakov P, Smyth C M, Khosravi A, Zhao P, Hurley P K, Hinkle C L, Wallace R M, Young C D 2019 ACS Appl. Electron. Mater. 1 210
Google Scholar
[79] Hoffman A N, Stanford M G, Sales M G, Zhang C, Ivanov I N, McDonnell S J, Mandrus D G, Rack P D 2019 2D Mater. 6 045024
Google Scholar
[80] Singh A K, Andleeb S, Singh J, Dung H T, Seo Y, Eom J 2014 Adv. Funct. Mater. 24 7125
Google Scholar
[81] Iqbal M W, Iqbal M Z, Khan M F, Shehzad M A, Seo Y, Eom J 2015 Nanoscale 7 747
Google Scholar
[82] Wang S Y, Ko T S, Huang C C, Lin D Y, Huang Y S 2014 Jpn. J. Appl. Phys. 53 04EH07
Google Scholar
[83] Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, Sun Y, Sinclair R, Chang J, Tongay S, Wu J 2014 Nano Lett. 14 6976
Google Scholar
[84] Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S 2016 ACS Nano 10 2128
Google Scholar
[85] Jin Y, Keum D H, An S J, Kim J, Lee H S, Lee Y H 2015 Adv. Mater. 27 5534
Google Scholar
[86] Svatek S A, Antolin E, Lin D-Y, Frisenda R, Reuter C, Molina-Mendoza A J, Muñoz M, Agraït N, Ko T-S, de Lara D P, Castellanos-Gomez A 2017 J. Mater. Chem. C 5 854
Google Scholar
[87] Noh J Y, Kim H, Kim Y S 2014 Phys. Rev. B 89 205417
Google Scholar
[88] Haldar S, Vovusha H, Yadav M K, Eriksson O, Sanyal B 2015 Phys. Rev. B 92 235408
Google Scholar
[89] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X 2013 Nat. Commun. 4 2642
Google Scholar
[90] Cui Z, Ke X, Li E, Wang X, Ding Y, Liu T, Li M, Zhao B 2018 Opt. Quantum. Electron. 50 1
Google Scholar
[91] Zhang X, Liao Q, Liu S, Kang Z, Zhang Z, Du J, Li F, Zhang S, Xiao J, Liu B, Ou Y, Liu X, Gu L, Zhang Y 2017 Nat. Commun. 8 15881
Google Scholar
[92] Zhang X, Liao Q, Kang Z, Liu B, Ou Y, Du J, Xiao J, Gao L, Shan H, Luo Y, Fang Z, Wang P, Sun Z, Zhang Z, Zhang Y 2019 ACS Nano 13 3280
Google Scholar
[93] Sun M, Xie D, Sun Y, Li W, Teng C, Xu J 2017 Sci. Rep. 7 4505
Google Scholar
[94] Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P, Sow C H 2014 ACS Nano 8 6334
Google Scholar
[95] Xu Z-Q, Zhang Y, Wang Z, Shen Y, Huang W, Xia X, Yu W, Xue Y, Sun L, Zheng C, Lu Y, Liao L, Bao Q 2016 2D Mater. 3 041001
Google Scholar
[96] He Y, Sobhani A, Lei S, Zhang Z, Gong Y, Jin Z, Zhou W, Yang Y, Zhang Y, Wang X, Yakobson B, Vajtai R, Halas N J, Li B, Xie E, Ajayan P 2016 Adv. Mater. 28 5126
Google Scholar
[97] Kim K S, Ji Y J, Kim K H, Choi S, Kang D H, Heo K, Cho S, Yim S, Lee S, Park J H, Jung Y S, Yeom G Y 2019 Nat. Commun. 10 4701
Google Scholar
[98] Tan C, Wang H, Zhu X, Gao W, Li H, Chen J, Li G, Chen L, Xu J, Hu X, Li L, Zhai T 2020 ACS Appl. Mater. Interfaces 12 44934
Google Scholar
[99] Wang Z, Chen Y, Wu P, Ye J, Peng M, Yan Y, Zhong F, He T, Wang Y, Xu M, Zhang K, Hu Z, Li Q, Zhang L, Wang F, Wang P 2020 Infrared Phys. Technol. 106 103272
Google Scholar
[100] Fang H, Hu W 2017 Adv. Sci. 4 1700323
Google Scholar
[101] Jiang J, Ling C, Xu T, Wang W, Niu X, Zafar A, Yan Z, Wang X, You Y, Sun L, Lu J, Wang J, Ni Z 2018 Adv. Mater. 30 1804332
Google Scholar
[102] Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100
Google Scholar
[103] Lucovsky G, Emmons R B 1965 Appl. Opt. 4 697
Google Scholar
计量
- 文章访问数: 12501
- PDF下载量: 449
- 被引次数: 0