Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-composition design of high-hardness and high-electric-conductivity Cu-Ni-Si Alloy

Li Dong-Mei Han Jing-Yu Dong Chuang

Citation:

Phase-composition design of high-hardness and high-electric-conductivity Cu-Ni-Si Alloy

Li Dong-Mei, Han Jing-Yu, Dong Chuang
PDF
HTML
Get Citation
  • Cu-Ni-Si alloy has good electrical conductivity, thermal conductivity, high strength, and high hardness, and is widely used in electronic components and other fields. When the compositions of the Cu-Ni-Si alloy are designed, the determination of the phase component is critical. In this work, the composition of Cu-Ni-Si alloy is designed according to the "precipitation phase" by cluster-plus-glum-atom model. Following the cluster selection criteria, the δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si phase clusters are determined, respectively, and the corresponding cluster formulas are [Ni-Ni8Si5]Ni,[Si-Ni10]Si3, and [Si-Ni12]Si3. the compositions of a series of Cu-Ni-Si alloys are designed according to the different precipitated phases of δ-Ni2Si, γ-Ni5Si2, and β-Ni3Si each with Cu atom content being 93.75%, 95%, 95.8%, 96.7% and 97.5%, respectively. The alloy raw material is melted into alloy ingot in an argon-filled vacuum arc furnace. The ingots undergoes solid-solution at 950 ° C for 1 hour and water quenching then aging treatment at 450 ° C for 4 hour and water quenching. The conductivity and Vickers hardness of the alloy are tested by conductivity meter and hardness meter, respectively. The microstructure of the alloy is characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In general, the electrical conductivity of Cu-Ni-Si is the main consideration in the design of alloy composition, the content values of matrix Cu atoms are in the ranges of 90%-95.63% and 95.63%-97.5% respectively, the precipitated phases are designed according to δ-Ni2Si and γ-Ni5Si2 respectively; the content of matrix Cu atoms is over 97.5%, it can be designed according to any phase of δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si, with no difference in electrical conductivity among them. If the strength of the alloy is the main factor in the composition design, the content values of Cu atoms in the matrix are in the ranges of 90% — 93.93%, 93.93% — 94.34%, 94.34%— 95.63%, and 95.63%—96.12% respectively, according to the composition intervals the precipitated phases are designed as δ-Ni2Si, γ-Ni5Si2, β-Ni3Si, and γ-Ni5Si2, respectively. Once the content of Cu in the matrix is greater than 96.12%, the precipitated phase can be designed according to any of the phases of δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by The National Natural Science Foundation of China (Grant No. 11674045)
    [1]

    Gholami M, Vesely J, Altenberger I, Kuhn H A, Janecek M, Wollmann M, Wagner L 2017 J. Alloys Compd. 696 201Google Scholar

    [2]

    Li D M, Jiang B B, Li X N, Wang Qing, Dong C 2019 Acta Metall. Sinica DOI:10.11900/0412.1961.2019.00080

    [3]

    Corson M G 1927 Aime. Trans. 43 5

    [4]

    Corson M G 1927 Iron Age 119 421

    [5]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 336Google Scholar

    [6]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 365Google Scholar

    [7]

    Robertson W D, Grenier E G, Nole V F 1961 Trans.: Met. Soc. Aime 221 503

    [8]

    Lei Q, Lia Z, Wang M P, Zhang L, Gong S, Xiao Z, Pan Z Y 2011 J. Alloys Compd. 509 3617Google Scholar

    [9]

    Li D M, Wang Q, Jiang B B, Li X N, Zhou W L, Dong C, Wang H, Chen Q X 2017 PNSI 27 467 DOI:10.1016/j.pnsc.2017.06.006

    [10]

    Lockyer S A, Noble F W 1994 J. Mater. Sci. 29 218Google Scholar

    [11]

    Futatsuka R 1997 J. Jpn. Copper Brass Res. Assoc. 36 25

    [12]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Chem. Phys. 79 81Google Scholar

    [13]

    Yamamoto Y, Sasaki G, Odasin M 1999 J. Jpn Copper Brass Res. Assoc 38 204

    [14]

    Ryu H J, Baik H K, Hong S H 2000 J. Mater. Sci. 35 3641Google Scholar

    [15]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Sci. Eng. A 361 93Google Scholar

    [16]

    Kim Y G, Seong T Y, Han J H 1986 J. Mater. Sci. 21 1357Google Scholar

    [17]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar

    [18]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Metall. Sin. 54 293Google Scholar

    [19]

    Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K 2015 Mater. Sci. Eng., A 626 369Google Scholar

    [20]

    Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C 2013 Metall. Mater. Trans. A 44 1872Google Scholar

    [21]

    郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯 2011 60 116101Google Scholar

    Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C 2011 Acta Phys. Sin. 60 116101Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    姜贝贝, 王清, 董闯 2017 66 026100

    Jiang B B, Wang Q, Dong C 2017 Acta Phys. Sin. 66 026100

    [24]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065 DOI:10.1038/srep07065

    [25]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [26]

    Qian S N, Dong C, Liu T Y, Qin Y, Wang Q, Wu Y J, Gu L D, Zou J X, Heng X W, Peng L M, Zeng X Q 2018 J. Mater. Sci. Technol. 34 1132Google Scholar

    [27]

    Villars P 1997 Perason’s Handbook Copyright Materials (Park, OH:ASM Interational) pp1−2886

    [28]

    陈季香, 羌建兵, 王清, 董闯 2012 61 046102Google Scholar

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. 61 046102Google Scholar

    [29]

    王清 2005博士学位论文 (大连: 大连理工大学)

    Wang Q 2005 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Luo L J, Jiang W, Wang Q, Wang Y M, Han G, Dong C 2010 Philos. Mag. 90 3961Google Scholar

    [31]

    Hu T, Chen J H, Liu J Z, Liu Z R, Wu C L 2013 Acta Mater. 61 1210Google Scholar

    [32]

    Hu J, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar

  • 图 1  基体Cu中立方八面体团簇

    Figure 1.  Cubooctahedral cluster in Cu matrix.

    图 2  δ-Ni2Si团簇的三种构型

    Figure 2.  Three configurations of δ-Ni2Si cluster

    图 3  δ-Ni2Si相中分别以Ni1, Ni2, Si1为心部原子的团簇径向原子密度

    Figure 3.  Radial atomic density around 3 different sites Ni1, Ni2 and Si1 in the δ-Ni2Si phase.

    图 4  γ-Ni5Si2团簇的十三种构型

    Figure 4.  Thirteen configurations of γ-Ni5Si2 cluster

    图 5  γ-Ni5Si2晶体相中分别以Ni1, Ni2, Si1, Ni3, Ni4, Si2, Si3, Si4, Si5, Ni5, Ni6, Ni7, Ni8为心的团簇径向原子分布

    Figure 5.  Radial atomic density around 13 different sites Ni1, Ni2, Si1, Ni3, Ni4, Si2, Si3, Si4, Si5, Ni5, Ni6, Ni7, Ni8 and Ni8 in the γ-Ni5Si2 phase.

    图 6  β-Ni3Si团簇的两种构型

    Figure 6.  Two configurations of β-Ni3Si cluster

    图 7  Ni/Si(at.%)分别为 (a) 2, (b) 2.5和(c) 3在CCu分别为 93.75%, 95%, 95.83%, 96.7%和97.5% 每一成分点处的合金XRD谱图

    Figure 7.  XRD patterns of the alloys when CCu is 93.75%, 95%, 95.83%, 96.7% and 97.5%, and the Ni/Si (at.%) is (a) 2, (b) 2.5 and (c) 3 in each composition point, respectively.

    图 8  合金的微观形貌. CCu为 93.75% 时Ni/Si 分别为(a) 2, (b) 2.5和(c) 3及CCu为96.7% 时Ni/Si 分别为(d) 2, (e) 2.5或(f) 3

    Figure 8.  The microstructure of the alloys. The Ni/Si is (a) 2, (b) 2.5 and (c) 3 when CCu is 93.75% and Ni/Si is (a) 2, (b) 2.5 and (c) 3 when CCu is 96.7%, respectively.

    图 9  Cu96.7Ni2.36Si0.94 样品的(a)明场像和(b)选区衍射图***图(b)(123)中,2上面也有横杠***

    Figure 9.  (a) Bright-field micrographs and (b) selected area diffraction patterns of the Cu96.7Ni2.36Si0.94 sample.

    图 10  (a) Ni/Si分别为2, 2.5, 3时, 维氏硬度和导电性随CCu的变化; 三元相图中 (b) 导电性和(c)维氏硬度随Cu, Ni和Si元素的原子分数的变化***图(a)和(b)中均应为%IACS***

    Figure 10.  (a) Ni/Si is 2, 2.5 and 3 respectively, the variation of vickers hardness and electrical conductivity as increase CCu; the variation of (b) electrical conductivity and (c) vickers hardness as atomic percent of Cu,Ni and Si in ternary phase diagram.

    表 1  δ-Ni2Si相中以3种占位原子为心的径向原子分布

    Table 1.  Radial atomic distributions around 3 different sites in the δ-Ni2Si phase.

    心部原子壳层原子数目壳层原子种类壳层原子与心部原子的距离r/nm径向原子密度ρ/nm-3团簇团簇构型
    Ni11Si10.2082352.909Ni9Si4图2(a)
    2Si10.2261482.615
    1Si10.2323295.245
    2Ni20.25359102.526
    1Ni20.26231105.871
    1Ni20.26268118.602
    2Ni10.27021133.174
    2Ni20.27132155.464
    1Si10.29611128.795
    Ni22Si10.2462947.964Ni9Si5图2(b)
    2Si10.2487277.619
    1Si10.2497292.092
    2Ni10.25359117.172
    2Ni20.25818138.792
    1Ni10.26231145.573
    1Ni10.26268158.136
    2Ni10.27132167.423
    1Si10.32162107.695
    2Ni20.3442693.668
    Si11Ni10.2082352.909SiNi9图2(c)
    2Ni10.2261482.615
    1Ni10.2323295.245
    2Ni20.24629111.915
    2Ni20.24872139.715
    1Ni20.24972153.381
    1Ni10.29611101.196
    2Si10.3148499.496
    1Ni20.32162100.515
    2Si10.3405696.754
    DownLoad: CSV

    表 2  γ-Ni5Si2 相中以13种占位原子为心的径向原子分布

    Table 2.  Radial atomic distributions around 13 different sites in the γ-Ni5Si2 phase.

    心部原子壳层原子数目壳层原子种类壳层原子与心部原子的距离r/nm径向原子密度ρ/nm–3团簇团簇构型
    Ni13Si50.23282113.557Ni7Si5图4(a)
    6Ni80.25853138.229
    2Si10.26156160.177
    6Ni70.32954120.138
    6Ni40.3937693.896
    6Ni60.4271691.935
    3Si50.4342896.236
    6Ni80.4564697.946
    6Si20.47401100.921
    2Ni20.4973491.258
    Ni21Ni20.2333237.61Ni8Si4图4(b)
    1Si10.2357854.668
    3Si40.2421100.995
    3Ni60.24757141.671
    3Ni50.25331176.342
    3Ni50.3455586.834
    3Ni70.34582103.957
    3Ni30.3862187.072
    3Si30.417478.829
    3Ni60.4182488.149
    3Ni50.4204396.421
    3Ni30.4361794.99
    Ni33Si40.2440965.696Ni10Si4图4(c)
    1Si20.2496576.755
    3Ni50.25453115.879
    3Ni60.26112147.572
    3Ni50.26706175.563
    1Si30.3655873.329
    3Ni70.3733982.588
    3Ni20.3862187.072
    3Ni60.4133581.169
    3Ni50.4222285.68
    Ni43Si50.2322576.265Ni10Si4图4(d)
    1Si30.2545672.399
    3Ni80.25532114.807
    3Ni70.25574157.083
    3Ni80.27402162.522
    1Si20.3582177.949
    3Ni60.3797478.514
    3Ni10.3937682.159
    3Ni70.3979790.948
    3Ni80.4173988.689
    Ni51Si40.2314238.544Ni8Si3图4(e)
    1Si30.2324657.044
    1Si40.2417767.606
    1Ni60.2507175.786
    1Ni60.2531688.328
    1Ni20.25331102.866
    1Ni50.25375116.951
    1Ni30.26706137.942
    1Ni60.28031130.136
    2Ni50.29349132.276
    Ni61Si20.2299739.278Ni9Si4图4(f)
    1Si10.2388952.56
    1Si40.244565.366
    1Ni20.2475778.706
    1Si30.2491692.651
    1Ni50.25071103.499
    1Ni50.25316117.77
    1Ni80.25429130.733
    1Ni70.25495144.134
    1Ni70.26059148.474
    1Ni30.26112160.988
    1Ni70.26728162.621
    Ni71Si30.2256741.566Ni9Si4图4(g)
    1Si10.2295859.218
    1Si50.2384970.434
    1Si20.2403885.982
    1Ni80.2458896.408
    1Ni80.25044106.443
    1Ni60.25495115.307
    1Ni40.25574128.522
    1Ni50.26021135.569
    1Ni60.26059148.474
    1Ni60.26728150.111
    1Ni80.27224153.893
    Ni81Si50.2305938.962Ni9Si4图4(h)
    1Si50.2405451.486
    1Ni80.245764.413
    1Ni70.2458880.34
    1Si20.2465695.613
    1Ni70.25044106.443
    1Ni60.25429116.207
    1Ni40.25531129.173
    1Ni10.25853138.229
    Ni81Si10.27197130.605Ni9Si4图4(h)
    1Ni70.27224142.055
    1Ni40.27402150.913
    Si13Ni70.2295878.957SiNi11图4(i)
    1Ni20.2357891.113
    3Ni60.23889140.161
    1Ni10.26156120.132
    3Ni80.27197142.479
    3Ni50.3448987.334
    3Si50.35017100.131
    3Si20.3854387.602
    3Si30.3923794.898
    3Si40.4113692.647
    Si23Ni60.2299778.556SiNi10图4(j)
    3Ni70.24038120.375
    3Ni80.24656159.354
    1Ni30.24965168.861
    3Ni50.3346289.249
    3Si50.3515393.475
    1Ni40.3582193.539
    3Si10.3854387.602
    3Si30.3898296.772
    3Si40.4072795.466
    Si33Ni70.2256783.132SiNi10图4(k)
    3Ni50.23246133.102
    3Ni60.24916154.418
    1Ni40.25456159.277
    3Ni80.3347389.161
    3Si40.3589587.797
    1Ni30.3655887.995
    3Si20.3898284.676
    3Si10.3923794.898
    3Si50.40056100.344
    Si42Ni50.2314257.816SiNi10图4(l)
    2Ni50.2417784.507
    2Ni20.2421117.827
    2Ni30.24409147.817
    2Ni60.2445179.758
    2Ni50.29512120.803
    2Si30.3589577.468
    2Si40.3674381.857
    4Si40.3943181.816
    2Si20.4072781.323
    Si52Ni80.2305958.364SiNi9图4(m)
    2Ni40.2322595.331
    1Ni10.23282113.559
    2Ni70.23849140.868
    2Ni80.24054171.621
    2Ni80.28808119.887
    2Si10.3501777.879
    2Si20.3515376.979
    4Si50.3764380.603
    2Si30.4005674.329
    DownLoad: CSV

    表 3  β-Ni3Si相中以不同原子为心的径向原子分布

    Table 3.  Radial atomic distributions around 2 different sites in the β-Ni3Si phase.

    心部
    原子
    壳层
    原子数
    壳层原
    子种类
    壳层原子与心部原子的距离r/nm径向原子
    密度ρ/
    nm−3
    团簇团簇
    构型
    Ni14Si10.24791203.795Ni9Si4图6(a)
    8Ni10.24791203.795
    Si112Ni10.24791203.795SiNi12图6(b)
    DownLoad: CSV

    表 4  Cu-Ni-Si-M (M = Fe or null)系列合金的Ni/Si(原子比)、团簇成分式、成分(原子分数)、维氏硬度(kgf/mm2)和导电率(%IACS)

    Table 4.  Ni/Si(at.%), Cluster formula, Composition(at.%), Vickers Hardness (kgf/mm2) and Electrical conductivity(%IACS) of Cu-Ni-Si-M (M = Fe or null) alloys.

    Ni/Si (at.%)cluster formulascomposition wt.% /at.%Vickers Hardness kgf·mm–2Electrical Conductivity /%IACS
    2[(Fe1/15Ni9/15Si5/15)Cu12]Cu3 95.18Cu3.52Ni0.93Si0.37Fe
    (Cu93.75Ni3.75Si2.08Fe0.42)
    25835
    ([(Ni10/15Si5/15)Cu12]Cu3)4+([CuCu12]Cu3)96.14Cu3.11Ni0.75Si
    (Cu95Ni3.33Si1.67)
    16151
    ([(Ni10/15Si5/15)Cu12]Cu3)2+([CuCu12]Cu3)96.79Cu2.59Ni0.62Si
    (Cu95.83Ni2.78Si1.39)
    18935
    {[(Ni10/15Si5/15)1.0602Cu12]Cu3}0.996 +{[CuCu12]Cu3}97.4Cu2.1Ni0.5Si
    (Cu96.7Ni2.2Si1.1)
    19140
    ([(Ni10/15Si5/15)Cu12]Cu3)2+([CuCu12]Cu3)398.08Cu1.55Ni0.37Si
    (Cu97.5Ni1.67Si0.83)
    17248
    2.5[(Fe1/14Ni9/14Si4/14)Cu12]Cu395.04Cu3.75Ni0.8Si0.41Fe
    (Cu93.75Ni4.01Si1.79Fe0.45)
    26232.5
    ([(Ni10/14Si4/14)Cu12]Cu3)4+([CuCu12]Cu3)96.03Cu3.33Ni0.64Si
    (Cu95Ni3.57Si1.43)
    20141
    ([(Ni10/14Si4/14)Cu12]Cu3)2+([CuCu12]Cu3)96.69Cu2.78Ni0.53Si
    (Cu95.83Ni2.98Si1.19)
    20138
    {([(Ni10/14Si4/14) 1.0602Cu12]Cu3)}0.996 +([CuCu12]Cu3)97.39Cu2.2Ni0.41Si
    (Cu96.7Ni2.36Si0.94)
    16841
    ([Ni10/14Si4/14)Cu12]Cu3)2+([CuCu12]Cu3)398.02Cu1.66Ni0.32Si
    (Cu97.5Ni1.79Si0.71)
    17648
    3([(Fe1/16Ni11/16Si4/16)Cu12]Cu3)94.93Cu4.02Ni0.7Si0.35Fe
    (Cu93.75Ni4.3Si1.56Fe0.39)
    24130
    ([(Ni12/16Si4/16)Cu12]Cu3)4+([CuCu12]Cu3)95.94Cu3.5Ni0.56Si
    (Cu95Ni3.75Si1.25)
    22533
    ([(Ni12/16Si4/16)Cu12]Cu3)2+([CuCu12]Cu3)96.63Cu2.91Ni0.46Si
    (Cu95.83Ni3.13Si1.04)
    19136
    {([(Ni12/16Si4/16)1.0602Cu12]Cu3)}0.996
    + ([CuCu12]Cu3)
    97.33Cu2.31Ni0.36Si
    (Cu96.7Ni2.47Si0.83)
    16039
    ([(Ni12/16Si4/16)Cu12]Cu3)2+([CuCu12]Cu3)397.98Cu1.74Ni0.28Si
    (Cu97.5Ni1.87Si0.63)
    17147
    DownLoad: CSV
    Baidu
  • [1]

    Gholami M, Vesely J, Altenberger I, Kuhn H A, Janecek M, Wollmann M, Wagner L 2017 J. Alloys Compd. 696 201Google Scholar

    [2]

    Li D M, Jiang B B, Li X N, Wang Qing, Dong C 2019 Acta Metall. Sinica DOI:10.11900/0412.1961.2019.00080

    [3]

    Corson M G 1927 Aime. Trans. 43 5

    [4]

    Corson M G 1927 Iron Age 119 421

    [5]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 336Google Scholar

    [6]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 365Google Scholar

    [7]

    Robertson W D, Grenier E G, Nole V F 1961 Trans.: Met. Soc. Aime 221 503

    [8]

    Lei Q, Lia Z, Wang M P, Zhang L, Gong S, Xiao Z, Pan Z Y 2011 J. Alloys Compd. 509 3617Google Scholar

    [9]

    Li D M, Wang Q, Jiang B B, Li X N, Zhou W L, Dong C, Wang H, Chen Q X 2017 PNSI 27 467 DOI:10.1016/j.pnsc.2017.06.006

    [10]

    Lockyer S A, Noble F W 1994 J. Mater. Sci. 29 218Google Scholar

    [11]

    Futatsuka R 1997 J. Jpn. Copper Brass Res. Assoc. 36 25

    [12]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Chem. Phys. 79 81Google Scholar

    [13]

    Yamamoto Y, Sasaki G, Odasin M 1999 J. Jpn Copper Brass Res. Assoc 38 204

    [14]

    Ryu H J, Baik H K, Hong S H 2000 J. Mater. Sci. 35 3641Google Scholar

    [15]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Sci. Eng. A 361 93Google Scholar

    [16]

    Kim Y G, Seong T Y, Han J H 1986 J. Mater. Sci. 21 1357Google Scholar

    [17]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar

    [18]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Metall. Sin. 54 293Google Scholar

    [19]

    Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K 2015 Mater. Sci. Eng., A 626 369Google Scholar

    [20]

    Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C 2013 Metall. Mater. Trans. A 44 1872Google Scholar

    [21]

    郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯 2011 60 116101Google Scholar

    Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C 2011 Acta Phys. Sin. 60 116101Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    姜贝贝, 王清, 董闯 2017 66 026100

    Jiang B B, Wang Q, Dong C 2017 Acta Phys. Sin. 66 026100

    [24]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065 DOI:10.1038/srep07065

    [25]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [26]

    Qian S N, Dong C, Liu T Y, Qin Y, Wang Q, Wu Y J, Gu L D, Zou J X, Heng X W, Peng L M, Zeng X Q 2018 J. Mater. Sci. Technol. 34 1132Google Scholar

    [27]

    Villars P 1997 Perason’s Handbook Copyright Materials (Park, OH:ASM Interational) pp1−2886

    [28]

    陈季香, 羌建兵, 王清, 董闯 2012 61 046102Google Scholar

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. 61 046102Google Scholar

    [29]

    王清 2005博士学位论文 (大连: 大连理工大学)

    Wang Q 2005 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Luo L J, Jiang W, Wang Q, Wang Y M, Han G, Dong C 2010 Philos. Mag. 90 3961Google Scholar

    [31]

    Hu T, Chen J H, Liu J Z, Liu Z R, Wu C L 2013 Acta Mater. 61 1210Google Scholar

    [32]

    Hu J, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar

  • [1] Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang. First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model. Acta Physica Sinica, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [2] Bao Kuo, Ma Shuai-Ling, Xu Chun-Hong, Cui Tian. Design of ultra-hard multifunctional transition metal compounds. Acta Physica Sinica, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [3] Wang Tong, Hu Xiao-Gang, Wu Ai-Min, Lin Guo-Qiang, Yu Xue-Wen, Dong Chuang. Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model. Acta Physica Sinica, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [4] Jiang Bei-Bei, Wang Qing, Dong Chuang. A cluster-formula composition design approach based on the local short-range order in solid solution structure. Acta Physica Sinica, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [5] Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang. Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys. Acta Physica Sinica, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [6] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [7] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang. High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [8] Han Jun, Zhang Peng, Gong Hai-Bo, Yang Xiao-Peng, Qiu Zhi-Wen, Zi Min, Cao Bing-Qiang. Influence of the growth conditions on the transparent conductive properties of ZnO:Al thin films grown by pulsed laser deposition. Acta Physica Sinica, 2013, 62(21): 216102. doi: 10.7498/aps.62.216102
    [9] Wu Yong-Sheng, Wang Bing. Preparation and physical properties of (BEDT-TTF)[FeBr4] crystal. Acta Physica Sinica, 2012, 61(5): 056104. doi: 10.7498/aps.61.056104
    [10] Hao Chuan-Pu, Wang Qing, Ma Ren-Tao, Wang Ying-Min, Qiang Jian-Bing, Dong Chuang. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Physica Sinica, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [11] Ri Chung-Ho, Li Lin, Zhu Lin. First-principles study of the electronic structure and electric conductivity in W-type hexagonal ferrite BaFe18O27. Acta Physica Sinica, 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [12] Li Ke, Dong Rui-Xin, Ban Ge, Han Hong-Wen, Su Wei, Yan Xun-Ling. The effect of nickel ions on structure and conductivity of DNA. Acta Physica Sinica, 2009, 58(9): 6477-6481. doi: 10.7498/aps.58.6477
    [13] Meng Xian-Lan, Gao Xu-Tuan, Qu Zhen, Kang Da-Wei, Liu De-Sheng, Xie Shi-Jie. Effects of interfacial couplings on charge transport properties of DNA molecule. Acta Physica Sinica, 2008, 57(8): 5316-5322. doi: 10.7498/aps.57.5316
    [14] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [15] LU YA-FENG, WU XIAO-ZU, LI QING-YUN, ZHOU LIAN, XIN MIAN-RONG, LUO CHANG-XUN. SUPERCONDUCTIVITY OF RICH-Ca,Cu Bi(Pb)-Sr- Ca-Cu-O SYSTEM. Acta Physica Sinica, 1992, 41(7): 1157-1161. doi: 10.7498/aps.41.1157
    [16] XU ZHU-AN, OUYANG SONG, FANG MING-HU, WANG JING-SONG, ZHANG SHI-YONG, SHEN MING, ZHANG QI-RUI. SUPERCONDUCTIVITY IN Y1-xCaxBa2Cu3-xMxO7-δ (M=Fe, Ni) SYSTEMS. Acta Physica Sinica, 1992, 41(9): 1510-1516. doi: 10.7498/aps.41.1510
    [17] CHEN SHI-MIN, SUN JI-XIN. ELECTRONIC STRUCTURE AND SUPERCONDUCTIVITY OF Nd-(Ce)-Cu-O. Acta Physica Sinica, 1990, 39(12): 1994-1998. doi: 10.7498/aps.39.1994
    [18] WU BAI-MEI, CHEN ZHAO-JIA. THE ELECTRON STRUCTURE, MAGNETISM AND SUPERCONDUCTIVITY OF AMORPHOUS Nb-Ni ALLOYS. Acta Physica Sinica, 1988, 37(1): 29-35. doi: 10.7498/aps.37.29
    [19] Chen Xi-chen, Guan Wei-yan, Yi Sun-sheng, Wang Zu-lun, Lin Ying. A STUDY ON THE SUPERCONDUCTIVITY OF FAST QUENCHED Al-Si-Ge ALLOY. Acta Physica Sinica, 1983, 32(4): 446-459. doi: 10.7498/aps.32.446
    [20] GUAN WEI-YAN, CHEN XI-SHEN, WANG ZU-LUN, YI SUN-SHENG, LIN YING. A STUDY OF THE SUPER-CONDUCTIVITY OF FAST QUENCHED Al-Si ALLOY. Acta Physica Sinica, 1982, 31(4): 485-502. doi: 10.7498/aps.31.485
Metrics
  • Abstract views:  11868
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2019
  • Accepted Date:  15 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回
Baidu
map