搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟

李俊炜 王祖军 石成英 薛院院 宁浩 徐瑞 焦仟丽 贾同轩

引用本文:
Citation:

GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟

李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩

Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons

Li Jun-Wei, Wang Zu-Jun, Shi Cheng-Ying, Xue Yuan-Yuan, Ning Hao, Xu Rui, Jiao Qian-Li, Jia Tong-Xuan
PDF
HTML
导出引用
  • 以GaInP/GaAs/Ge三结太阳电池为研究对象, 开展了能量为0.7, 1, 3, 5, 10 MeV的质子辐照损伤模拟研究, 建立了三结太阳电池结构模型和不同能量质子辐照模型, 获得了不同质子辐照条件下的I-V曲线, 光谱响应曲线, 结合已有实验结果验证了本文模拟结果, 分析了三结太阳电池短路电流、开路电压、最大功率、光谱响应随质子能量的变化规律, 利用不同辐照条件下三结太阳电池最大输出功率退化结果, 拟合得到了三结太阳电池最大输出功率随位移损伤剂量的退化曲线. 研究结果表明, 质子辐照会在三结太阳电池中引入位移损伤缺陷, 使得少数载流子扩散长度退化幅度随质子能量的减小而增大, 从而导致三结太阳电池相关电学参数的退化随质子能量的减小而增大. 相同辐照条件下, 中电池光谱响应退化幅度远大于顶电池光谱响应退化幅度, 中电池抗辐照性能较差, 同时中电池长波范围内光谱响应的退化幅度比短波范围更大, 表明中电池相关电学参数的退化主要来源于基区损伤.
    The GaInP/GaAs/Ge triple-junction solar cells have been widely used for spacecraft energy sources because of their simple manufacturing process, stable structures, high conversion efficiency, and low cost. The performances of the GaInP/GaAs/Ge triple-junction solar cells show a remarkable degradation after space proton irradiation. At present, the experimental researches of proton irradiation of GaInP/GaAs/Ge triple-junction solar cells with different energy and fluence have been carried out. However, the experimental researches can analyze the proton radiation damage only under the specific energy and fluence, but cannot analyze the proton radiation damage under the complete space energy spectrum. The numerical simulation of triple-junction solar cells can be used to accurately analyze the degradation of major parameters under different energy proton irradiations which cannot be achieved experimentally.In this paper, the modeling of degradation for GaInP/GaAs/Ge triple-junction solar cells, induced by proton irradiation with different energy is studied by numerical simulation. The energy values include 0.7 MeV, 1 MeV, 3 MeV, 5 MeV, and 10 MeV. The structure of GaInP/GaAs/Ge model and proton irradiation-induced defect model with different energy and fluence are established. The I-V curves and spectral response curves under different proton irradiation conditions are obtained. The simulation results are in good agreement with the experimental results. The degradation of major parameters of GaInP/GaAs/Ge triple-junction solar cells, caused by different energy and fluence proton irradiations, is studied, these parameters being the short circuit current, open circuit voltage, minority carrier lifetime, electron current density, external quantum efficiency, and maximum power. The degradation curve of the maximum power with displacement damage dose is obtained by fitting the degradation simulation results under different proton irradiation conditions. Displacement damage defects induced by protons are introduced into triple-junction solar cells, which lead the minority carrier diffusion length to degrade. The degradation increases with the proton energy decreasing. In the meanwhile, it will lead the related electrical parameters to degrade, which increases with the proton energy decreasing. The simulation results show that related electrical parameters decrease with the proton irradiation fluence increasing. Under the same proton irradiation condition, the external quantum efficiency degradation of GaAs sub-cell is larger than that of GaInP sub-cell because the irradiation resistance of GaAs is poor. Among the degradations of spectral response of GaAs sub-cell at different wavelengths, the degradation in the long wave is greater than that in the short wave. It is found that the degradations of GaAs sub-cell related electrical parameters are mainly due to the damage to the base region.
      通信作者: 王祖军, wangzujun@nint.ac.cn ; 薛院院, xueyuanyuan@nint.ac.cn
    • 基金项目: 国家级-国家自然科学基金(11875223,11805155)
      Corresponding author: Wang Zu-Jun, wangzujun@nint.ac.cn ; Xue Yuan-Yuan, xueyuanyuan@nint.ac.cn
    [1]

    张忠卫, 陆剑峰, 池卫英, 王亮兴, 陈鸣波 2003 上海航天 03 33Google Scholar

    Zhang Z W, Lu J F, Chi W Y, Wang L X, Chen M B 2003 Aerospace Shanghai 03 33Google Scholar

    [2]

    Jones P A, Spence B R 2011 IEEE Trans. Aerosp. Electron. Syst. 26 17Google Scholar

    [3]

    Lohmeyer W Q, Cahoy K 2013 Space Weather 11 476Google Scholar

    [4]

    Zainud-Deen S H, Dawoud M, Malhat E A, Aboul-Dahab M A 2019 Wirel. Pers. Commun. 1 9Google Scholar

    [5]

    Campesato R, Baur C, Casale M, Gervasi M, Gombia E, Greco E, Kingma A, Rancoita P G, Rozza D, Tacconi M 2018 arXiv: 1809. 07157 [physics. ins-det]

    [6]

    张延清 2017 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang Y Q 2017 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [7]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [8]

    Wu R, Wang J L, Yan G, Wang R 2018 Chin. Phys. Lett. 35 046101Google Scholar

    [9]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [10]

    Bi Z, Zhang J C, Lv L, Hao Y 2014 IEEE Photonics Technol. Lett. 26 1492Google Scholar

    [11]

    Guo H L, Shi L F, Wu Y Y, Sun Q, Yu H, Xiao J D, Guo B 2018 Nucl. Instrum. Methods Phys. Res. B 431 1Google Scholar

    [12]

    Wang R, Lu M, Yi T C, Yang K, Ji X X 2014 Chin. Phys. Lett. 31 103Google Scholar

    [13]

    Elahidoost A, Fathipour M, Mojab A 2012 20th Iranian Conference on Electrical Engineering Tehran, Iran, May 15−17, 2012 p113

    [14]

    Yan Y Y, Fang M H, Tang X B, Chen F D, Huang H, Sun X Y, Ji L L 2019 Nucl. Instrum. Methods. Phys. Res. B 451 49Google Scholar

    [15]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [16]

    施敏 2003 半导体器件物理与工艺 (苏州: 苏州大学出版社) 第522页

    Shi M 2003 Semiconductor Devices Physics and Technology (Suzhou: Suzhou University Press) p522 (in Chinese)

    [17]

    Wang R, Guo Z L, Zhang X H, Zhai Z X 2003 Sol. Energy Mater. Sol. Cells 77 351Google Scholar

    [18]

    Khan A, Yamaguchi M, Dharmaso N, Bourgoin J, Ando K, Takamoto T 2002 Jpn. J. Appl. Phys. 41 1241Google Scholar

    [19]

    Dharmarasu N, Yamaguchi M, Bourgoin J C, Takamoto T, Ohshima T, Itoh H, Imaizumi M, Matsuda S 2002 Appl. Phys. Lett. 81 64Google Scholar

    [20]

    Li S S, Loo R Y 1991 Solar Cells 31 349Google Scholar

    [21]

    朱美芳, 熊绍珍 2014 太阳电池基础与应用 (上卷) (北京: 科学出版社) 第110页

    Zhu M F, Xiong S Z 2014 Foundation and Application of Solar Cells (Vol. 1) (Beijing: Science Press) p110 (in Chinese)

    [22]

    Silvaco Atlas User’s Manual http://www.silvaco.com.cn [2019-10-20]

    [23]

    Lu M, Wang R, Liu Y H, Hu W T, Feng Z, Han Z L 2011 Nucl. Instrum. Methods Phys. Res. B 269 1884Google Scholar

    [24]

    王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 59 4136Google Scholar

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin. 59 4136Google Scholar

    [25]

    Sato S, Miyamoto H, Imaizumi M, Shimazaki K, Morioka C, Kawano K, Ohshima T 2009 Sol Energy Mater. Sol. Cells 93 768Google Scholar

    [26]

    胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹 2009 58 5051Google Scholar

    Hu J M, Wu Y Y, Qian Y, Yang D Z, Yang S Y 2009 Acta Phys. Sin. 58 5051Google Scholar

    [27]

    Norde H 1979 J. Appl. Phys. 50 5052Google Scholar

    [28]

    Herlufsen S, Schmidt J, Hinken D, Bothe K, Boendel R 2008 Phys. Status Solidi 2 245Google Scholar

    [29]

    常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇 2016 65 108801Google Scholar

    Chang X Y, Yao S, Zhang Q L, Zhang Y, Wu B, Zhan R, Yang C B Wang Z Y 2016 Acta Phys. Sin. 65 108801Google Scholar

    [30]

    Anspaugh B E 1996 GaAs Solar Cell Radiation Handbook (Pasadena: Jet Propulsion Laboratory Publication) p5

  • 图 1  GaInP/GaAs/Ge三结太阳电池结构模型

    Fig. 1.  Structure parameters of GaInP/GaAs/Ge triple-junction solar cells.

    图 2  最大输出功率随辐照注量变化的模拟与实验结果

    Fig. 2.  Normalized maximum power versus fluence at the proton irradiation energy of 1 and 3 MeV (symbols and lines are experimental and simulation results respectively).

    图 3  不同能量和注量的质子辐照后, GaInP/GaAs/Ge三结太阳电池的I-V曲线 (a) 0.7 MeV; (b) 1 MeV; (c) 3 MeV; (d) 5 MeV; (e) 10 MeV

    Fig. 3.  Simulation results of I-V curves of GaInP/GaAs/Ge triple-junction solar cells irradiated by protons with different energy and fluence: (a) 0.7 MeV; (b) 1 MeV; (c) 3 MeV; (d) 5 MeV; (e) 10 MeV.

    图 4  不同能量质子辐照下, 归一化短路电流随辐照注量变化的模拟结果

    Fig. 4.  Simulation results of normalized short-circuit current versus proton fluence for the GaInP/GaAs/Ge triple-junction solar cells irradiated by different energy proton.

    图 5  不同能量质子辐照下, 归一化开路电压随辐照注量变化的模拟结果

    Fig. 5.  Simulation results of normalized open-circuit voltage versus proton fluence for GaInP/GaAs/Ge triple-junction solar cells irradiated by different energy proton.

    图 6  辐照注量为3 × 1012 cm–2, 顶电池GaInP和中电池GaAs在不同能量质子辐照下的外量子效率

    Fig. 6.  Simulation results of external quantum efficiency of GaInP and GaAs sub-cells before and after different energy proton irradiation with the fluence of 3 × 1012 cm–2.

    图 7  (a)初始中电池GaAs的基区少数载流子(电子)电流(Je)的模拟结果; (b)不同能量质子辐照下, 沿A-A′ 切线的中电池GaAs基区电子电流密度随基区厚度的变化

    Fig. 7.  (a) Simulation results of current density (Je) of minority carriers (electron) of GaAs middle cell base region before irradiation; (b) simulation results of current density of minority carriers (electron) versus base thickness for GaAs middle cell base region before and after different energy proton irradiation with the fluence of 3 × 1012 cm–2.

    图 8  不同能量质子辐照下, 三结太阳电池最大输出功率随辐照注量的退化结果

    Fig. 8.  Simulation results of normalized maximum power versus proton fluence for GaInP/GaAs/Ge triple-junction solar cells irradiated by different energy proton.

    图 9  三结太阳电池最大输出功率随位移损伤剂量的退化结果

    Fig. 9.  Degradation of normalized maximum power versus displacement damage dose for GaInP/GaAs/Ge triple-junction solar cells.

    表 1  能量为3 MeV, 注量为1 × 1013 cm–2质子辐照后, 顶电池GaInP的能级缺陷[19]

    Table 1.  GaInP defect parameters after 3 MeV proton irradiation with the fluence of 1 × 1013 cm–2.

    Deep levelE/eVNT/1014 cm–3
    H1Ev + 0.55 eV2.70
    H2Ev + 0.71 eV4.05
    H3Ev + 0.90 eV1.80
    E1Ec – 0.20 eV4.60
    E2Ec – 0.36 eV1.00
    E3Ec – 0.54 eV2.22
    E4Ec – 0.79 eV3.60
    下载: 导出CSV

    表 2  能量为3 MeV, 注量为1 × 1013 cm–2质子辐照后, 中电池GaAs的能级缺陷[20]

    Table 2.  GaAs defect parameters after 3 MeV proton irradiation with the fluence of 1 × 1013 cm–2.

    Deep levelE/eVNT/1014 cm–3
    H1Ev + 0.18 eV4.030
    H2Ev + 0.23 eV4.370
    H3Ev + 0.27 eV4.790
    H4Ev + 0.77 eV1.780
    E1Ec – 0.14 eV1.600
    E2Ec – 0.25 eV0.448
    E3Ec – 0.54 eV0.557
    E4Ec – 0.72 eV2.480
    下载: 导出CSV
    Baidu
  • [1]

    张忠卫, 陆剑峰, 池卫英, 王亮兴, 陈鸣波 2003 上海航天 03 33Google Scholar

    Zhang Z W, Lu J F, Chi W Y, Wang L X, Chen M B 2003 Aerospace Shanghai 03 33Google Scholar

    [2]

    Jones P A, Spence B R 2011 IEEE Trans. Aerosp. Electron. Syst. 26 17Google Scholar

    [3]

    Lohmeyer W Q, Cahoy K 2013 Space Weather 11 476Google Scholar

    [4]

    Zainud-Deen S H, Dawoud M, Malhat E A, Aboul-Dahab M A 2019 Wirel. Pers. Commun. 1 9Google Scholar

    [5]

    Campesato R, Baur C, Casale M, Gervasi M, Gombia E, Greco E, Kingma A, Rancoita P G, Rozza D, Tacconi M 2018 arXiv: 1809. 07157 [physics. ins-det]

    [6]

    张延清 2017 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang Y Q 2017 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [7]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [8]

    Wu R, Wang J L, Yan G, Wang R 2018 Chin. Phys. Lett. 35 046101Google Scholar

    [9]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [10]

    Bi Z, Zhang J C, Lv L, Hao Y 2014 IEEE Photonics Technol. Lett. 26 1492Google Scholar

    [11]

    Guo H L, Shi L F, Wu Y Y, Sun Q, Yu H, Xiao J D, Guo B 2018 Nucl. Instrum. Methods Phys. Res. B 431 1Google Scholar

    [12]

    Wang R, Lu M, Yi T C, Yang K, Ji X X 2014 Chin. Phys. Lett. 31 103Google Scholar

    [13]

    Elahidoost A, Fathipour M, Mojab A 2012 20th Iranian Conference on Electrical Engineering Tehran, Iran, May 15−17, 2012 p113

    [14]

    Yan Y Y, Fang M H, Tang X B, Chen F D, Huang H, Sun X Y, Ji L L 2019 Nucl. Instrum. Methods. Phys. Res. B 451 49Google Scholar

    [15]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [16]

    施敏 2003 半导体器件物理与工艺 (苏州: 苏州大学出版社) 第522页

    Shi M 2003 Semiconductor Devices Physics and Technology (Suzhou: Suzhou University Press) p522 (in Chinese)

    [17]

    Wang R, Guo Z L, Zhang X H, Zhai Z X 2003 Sol. Energy Mater. Sol. Cells 77 351Google Scholar

    [18]

    Khan A, Yamaguchi M, Dharmaso N, Bourgoin J, Ando K, Takamoto T 2002 Jpn. J. Appl. Phys. 41 1241Google Scholar

    [19]

    Dharmarasu N, Yamaguchi M, Bourgoin J C, Takamoto T, Ohshima T, Itoh H, Imaizumi M, Matsuda S 2002 Appl. Phys. Lett. 81 64Google Scholar

    [20]

    Li S S, Loo R Y 1991 Solar Cells 31 349Google Scholar

    [21]

    朱美芳, 熊绍珍 2014 太阳电池基础与应用 (上卷) (北京: 科学出版社) 第110页

    Zhu M F, Xiong S Z 2014 Foundation and Application of Solar Cells (Vol. 1) (Beijing: Science Press) p110 (in Chinese)

    [22]

    Silvaco Atlas User’s Manual http://www.silvaco.com.cn [2019-10-20]

    [23]

    Lu M, Wang R, Liu Y H, Hu W T, Feng Z, Han Z L 2011 Nucl. Instrum. Methods Phys. Res. B 269 1884Google Scholar

    [24]

    王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 59 4136Google Scholar

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin. 59 4136Google Scholar

    [25]

    Sato S, Miyamoto H, Imaizumi M, Shimazaki K, Morioka C, Kawano K, Ohshima T 2009 Sol Energy Mater. Sol. Cells 93 768Google Scholar

    [26]

    胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹 2009 58 5051Google Scholar

    Hu J M, Wu Y Y, Qian Y, Yang D Z, Yang S Y 2009 Acta Phys. Sin. 58 5051Google Scholar

    [27]

    Norde H 1979 J. Appl. Phys. 50 5052Google Scholar

    [28]

    Herlufsen S, Schmidt J, Hinken D, Bothe K, Boendel R 2008 Phys. Status Solidi 2 245Google Scholar

    [29]

    常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇 2016 65 108801Google Scholar

    Chang X Y, Yao S, Zhang Q L, Zhang Y, Wu B, Zhan R, Yang C B Wang Z Y 2016 Acta Phys. Sin. 65 108801Google Scholar

    [30]

    Anspaugh B E 1996 GaAs Solar Cell Radiation Handbook (Pasadena: Jet Propulsion Laboratory Publication) p5

  • [1] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响.  , 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [2] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析.  , 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [3] 李然然, 张一帆, 耿殿程, 张高伟, 渡边英雄, 韩文妥, 万发荣. V-4Cr-4Ti/Ti复合材料界面的辐照损伤特性研究.  , 2019, 68(21): 216101. doi: 10.7498/aps.68.20191204
    [4] 马大燕, 陈诺夫, 付蕊, 刘虎, 白一鸣, 弭辙, 陈吉堃. 晶格失配对GaInP/InxGa1-xAs/InyGa1-yAs倒装三结太阳电池性能影响的分析.  , 2017, 66(4): 048801. doi: 10.7498/aps.66.048801
    [5] 连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川. 高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化.  , 2016, 65(14): 148801. doi: 10.7498/aps.65.148801
    [6] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性.  , 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [7] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟.  , 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [8] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟.  , 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] 王哲, 王发展, 王欣, 何银花, 马姗, 吴振. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟.  , 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [10] 梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪. 三结太阳电池在非均匀光照下光斑强度和覆盖比率的优化研究.  , 2014, 63(16): 168801. doi: 10.7498/aps.63.168801
    [11] 黄培培, 刘大刚, 刘腊群, 王辉辉, 夏梦局, 陈颖. 单路脉冲功率真空装置的三维数值模拟研究.  , 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [12] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [13] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟.  , 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [14] 肖文波, 何兴道, 高益庆. 线偏振光电位移矢量振动方向对InGaP/InGaAs/Ge三结太阳电池开路电压的影响.  , 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [15] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟.  , 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [16] 王晓南, 邸洪双, 梁冰洁, 夏小明. 热连轧粗轧调宽轧制过程边角部金属流动三维数值模拟.  , 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [17] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟.  , 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 杨 帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛. FTIR研究快中子辐照直拉硅中的VO2.  , 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷.  , 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  10412
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-01-07
  • 刊出日期:  2020-05-05

/

返回文章
返回
Baidu
map