-
The effect of structure parameters on the performance of p-i-n InGaN solar cell is investigated by theoretical calculation. It is found that the short-circuit current decreases while the open-circuit voltage increases with the increase of bandgap of InGaN material. The maximal energy conversion efficiency of p-i-n homojunction InGaN solar cell can be obtained when the bandgap of InGaN is around 1.5 eV. It is also found that the energy conversion efficiency can be improved by appropriately increasing bandgap of p-InGaN p-i-n heterojunction InGaN solar cell, in addition, the efficiency of p-i-n heterojunction InGaN solar cell may be increased further by employing the back electric filed structure. The simulation results suggest that performance of InGaN solar cell can be improved by employing p-i-n heterojunction structure if the appropriate bandgaps of p-InGaN and n-InGaN are adopted.
-
Keywords:
- InGaN /
- solar cell /
- structure parameters
[1] Wu J, Walukiewicz W, Yu K M, Ager J W, Lu H, Schaff W J, Saiko Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[2] Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D A, Ivanov S V, Vekshin V A, Bechstedt F, Furthmuller J, Aderhold J, Graul J, Mudryi A V, Harima H, Hashimoto A, Yamamoto A, Haller E E 2002 Phys. Status Solid B 234 787
[3] Jani O, Ferguson I, Honsberg C, Kurtz S 2007 Appl. Phys. Lett. 91 132117
[4] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 143502
[5] Berkman E A, El-Masry N A, Emara A, Bedair S M 2008 Appl. Phys. Lett. 92 101118
[6] Yang C C, Sheu J K, Liang X W, Huang M S, Lee M L, Chang K H, Tu S J, Huang F W, Lai W C 2010 Appl. Phys. Lett. 97 021113
[7] Dahal R, Li J, Aryal K, Lin J Y, Jiang H X 2010 Appl. Phys. Lett. 97 073115
[8] Zhou M, Zhao D G 2009 Acta Phys. Sin. 58 7255 (in Chinese) [周梅,赵德刚 2009 58 7255]
[9] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510
[10] Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: John Wiley and Sons)
-
[1] Wu J, Walukiewicz W, Yu K M, Ager J W, Lu H, Schaff W J, Saiko Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[2] Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D A, Ivanov S V, Vekshin V A, Bechstedt F, Furthmuller J, Aderhold J, Graul J, Mudryi A V, Harima H, Hashimoto A, Yamamoto A, Haller E E 2002 Phys. Status Solid B 234 787
[3] Jani O, Ferguson I, Honsberg C, Kurtz S 2007 Appl. Phys. Lett. 91 132117
[4] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 143502
[5] Berkman E A, El-Masry N A, Emara A, Bedair S M 2008 Appl. Phys. Lett. 92 101118
[6] Yang C C, Sheu J K, Liang X W, Huang M S, Lee M L, Chang K H, Tu S J, Huang F W, Lai W C 2010 Appl. Phys. Lett. 97 021113
[7] Dahal R, Li J, Aryal K, Lin J Y, Jiang H X 2010 Appl. Phys. Lett. 97 073115
[8] Zhou M, Zhao D G 2009 Acta Phys. Sin. 58 7255 (in Chinese) [周梅,赵德刚 2009 58 7255]
[9] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510
[10] Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: John Wiley and Sons)
Catalog
Metrics
- Abstract views: 7736
- PDF Downloads: 950
- Cited By: 0