-
研究了器件结构参数对p-i-n结构InGaN单结太阳能电池性能的影响及物理机制. 模拟结果发现: 随着InGaN禁带宽度的增加, InGaN电池的短路电流减小, 但同时开路电压增加, 当InGaN层的禁带宽度为1.5 eV左右时, 同质p-i-n结InGaN电池的效率最高, 并计算了不同厚度的i层对InGaN电池效率的影响. 进一步的计算表明, 适当采用带宽更大的p-InGaN层形成异质p-i-n结InGaN电池可以获得更高效率, 但是p-InGaN层带宽过大也会导致电池的效率急剧下降. 研究还发现, 采用禁带宽度更大的n-InGaN层可以形成背电场, 从而增加p-i-n结InGaN太阳电池的效率. 研究结果表明, 适当选择p-InGaN和n-InGaN禁带宽度形成异质p-i-n结可以提高InGaN太阳能电池效率.The effect of structure parameters on the performance of p-i-n InGaN solar cell is investigated by theoretical calculation. It is found that the short-circuit current decreases while the open-circuit voltage increases with the increase of bandgap of InGaN material. The maximal energy conversion efficiency of p-i-n homojunction InGaN solar cell can be obtained when the bandgap of InGaN is around 1.5 eV. It is also found that the energy conversion efficiency can be improved by appropriately increasing bandgap of p-InGaN p-i-n heterojunction InGaN solar cell, in addition, the efficiency of p-i-n heterojunction InGaN solar cell may be increased further by employing the back electric filed structure. The simulation results suggest that performance of InGaN solar cell can be improved by employing p-i-n heterojunction structure if the appropriate bandgaps of p-InGaN and n-InGaN are adopted.
-
Keywords:
- InGaN /
- solar cell /
- structure parameters
[1] Wu J, Walukiewicz W, Yu K M, Ager J W, Lu H, Schaff W J, Saiko Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[2] Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D A, Ivanov S V, Vekshin V A, Bechstedt F, Furthmuller J, Aderhold J, Graul J, Mudryi A V, Harima H, Hashimoto A, Yamamoto A, Haller E E 2002 Phys. Status Solid B 234 787
[3] Jani O, Ferguson I, Honsberg C, Kurtz S 2007 Appl. Phys. Lett. 91 132117
[4] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 143502
[5] Berkman E A, El-Masry N A, Emara A, Bedair S M 2008 Appl. Phys. Lett. 92 101118
[6] Yang C C, Sheu J K, Liang X W, Huang M S, Lee M L, Chang K H, Tu S J, Huang F W, Lai W C 2010 Appl. Phys. Lett. 97 021113
[7] Dahal R, Li J, Aryal K, Lin J Y, Jiang H X 2010 Appl. Phys. Lett. 97 073115
[8] Zhou M, Zhao D G 2009 Acta Phys. Sin. 58 7255 (in Chinese) [周梅,赵德刚 2009 58 7255]
[9] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510
[10] Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: John Wiley and Sons)
-
[1] Wu J, Walukiewicz W, Yu K M, Ager J W, Lu H, Schaff W J, Saiko Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[2] Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D A, Ivanov S V, Vekshin V A, Bechstedt F, Furthmuller J, Aderhold J, Graul J, Mudryi A V, Harima H, Hashimoto A, Yamamoto A, Haller E E 2002 Phys. Status Solid B 234 787
[3] Jani O, Ferguson I, Honsberg C, Kurtz S 2007 Appl. Phys. Lett. 91 132117
[4] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 143502
[5] Berkman E A, El-Masry N A, Emara A, Bedair S M 2008 Appl. Phys. Lett. 92 101118
[6] Yang C C, Sheu J K, Liang X W, Huang M S, Lee M L, Chang K H, Tu S J, Huang F W, Lai W C 2010 Appl. Phys. Lett. 97 021113
[7] Dahal R, Li J, Aryal K, Lin J Y, Jiang H X 2010 Appl. Phys. Lett. 97 073115
[8] Zhou M, Zhao D G 2009 Acta Phys. Sin. 58 7255 (in Chinese) [周梅,赵德刚 2009 58 7255]
[9] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510
[10] Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: John Wiley and Sons)
计量
- 文章访问数: 7758
- PDF下载量: 951
- 被引次数: 0