-
During the past two decades, GaN-based light-emitting diode has been used as a high-quality light-source. Low-frequency noise as a diagnostic tool for quality control and reliability estimation has been widely accepted and used for semiconductor devices. Understanding the origin of efficiency-droop effect is key to developing the ultimate solid-state light source. Various mechanisms that may cause this effect have been suggested, including carriers’ escape, loses due to dislocations, and the Auger effect. In this study, we investigate the low-frequency noise behaviors of GaN-based blue light-emitting diode with InGaN/GaN multiple quantum wells. The measured currents range from 0.1 mA to 180 mA. According to the characteristics of power spectral density of current noise and the generation-combination mechanism between electrons and holes in the active region of light-emitting diode (LED), we adopt the well-known model of low-frequency noise to fit the relationship between power spectral density of current and frequency, and find that there exists a transition between generation-combination and 1/f noise when the light-emitting diode begins to work. In other words, it can be derived that the low-frequency noise behaviors are dominated by generation-combination noise when the currents are between 0.1 mA and 27 mA; with the current gradually increasing, the origin source of low-frequency noise in blue/violet-light LED will transit to the 1/f noise. Through the analysis of the transport and recombination mechanism of the carriers, and combination with the model of low-frequency noise, we analyze the corner frequency of the generation-recombination noise. The results of this paper provide an effective tool and method to study the conversion of light-emitting diodes.
-
Keywords:
- low-frequency noise /
- light-emitting diode /
- generation-recombination noise /
- recombination mechanisms
[1] Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar
[2] Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar
[3] Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar
[4] Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar
[5] Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar
[6] Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar
[7] Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar
[8] Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar
[9] Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar
[10] Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar
[11] Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar
[12] Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609
[13] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 64 050701Google Scholar
Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar
[14] Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1
[15] Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408
[16] Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar
[17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar
[18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar
[19] Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar
[20] Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar
[21] Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar
[22] Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631
[23] Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar
[24] Wong H 2003 Microelectron. Reliab. 43 585Google Scholar
-
低频噪声类型 测试电流/mA 0.1 10 27 50 80 180 白噪声 5.14 × 10–18 1.10 × 10–17 6.12 × 10–17 2.36 × 10–17 9.23 × 10–18 9.23 × 10–18 1/f 噪声 $\displaystyle\frac{{4.61 \times {{10}^{ - 16}}}}{{{f^{0.65}}}}$ $\displaystyle\frac{{1.82 \times {{10}^{ - 15}}}}{{{f^{0.83}}}}$ $\displaystyle\frac{{1.01 \times {{10}^{ - 13}}}}{{{f^{0.90}}}}$ $\displaystyle\frac{{5.29 \times {{10}^{ - 13}}}}{{{f^{0.95}}}}$ $\displaystyle\frac{{{\rm{3}}.{\rm{32}} \times {{10}^{ - 1{\rm{2}}}}}}{{{f^{{\rm{1}}.{\rm{09}}}}}}$ $\displaystyle\frac{{{\rm{5}}.{\rm{04}} \times {{10}^{ - 1{\rm{1}}}}}}{{{f^{{\rm{1}}.{\rm{09}}}}}}$ g-r噪声 $\displaystyle\frac{{{\rm{4}}.{\rm{07}} \times {\rm{1}}{{\rm{0}}^{ - {\rm{19}}}}}}{{{\rm{1}} + (\frac{f}{{14000}}{)^{1.84}}}}$ $\displaystyle\frac{{7.38 \times {\rm{1}}{{\rm{0}}^{ - {\rm{18}}}}}}{{{\rm{1}} + (\frac{f}{{990{\rm{0}}}}{)^{1.96}}}}$ $\displaystyle\frac{{1.32 \times {\rm{1}}{{\rm{0}}^{ - {\rm{17}}}}}}{{{\rm{1}} + (\frac{f}{{1560}}{)^{2.02}}}}$ 低频噪声起源 1/f + g-r噪声 1/f + g-r噪声 1/f + g-r噪声 1/f 噪声 1/f 噪声 1/f 噪声 表 2 低频1/f噪声和g-r噪声参数与电流之间的指数关系
Table 2. Exponent relationships between parameters of 1/f noise and g-r noise and measured currents.
低频噪声类型 测试电流/mA 0.1 10 27 50 80 180 1/f 噪声幅值 $B = {I^{3.834}}$ $B = {I^{7.370}}$ $B = {I^{8.285}}$ $B = {I^{_{^{^{_{9.436}}}}}}$ $B = {I^{_{^{10.4647}}}}$ $B = {I^{13.8273}}$ g-r噪声幅值 $C = {I^{^{_{4.0980}}}}$ $C = {I^{8.5660}}$ $C = I{}^{12.0212}$ g-r噪声时间常数 $\tau = {I^{0.9978}}$ $\tau = {I^{_{2.3969}}}$ $\tau = {I^{3.1520}}$ -
[1] Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar
[2] Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar
[3] Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar
[4] Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar
[5] Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar
[6] Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar
[7] Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar
[8] Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar
[9] Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar
[10] Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar
[11] Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar
[12] Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609
[13] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 64 050701Google Scholar
Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar
[14] Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1
[15] Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408
[16] Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar
[17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar
[18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar
[19] Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar
[20] Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar
[21] Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar
[22] Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631
[23] Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar
[24] Wong H 2003 Microelectron. Reliab. 43 585Google Scholar
Catalog
Metrics
- Abstract views: 8148
- PDF Downloads: 85
- Cited By: 0