搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧穿磁电阻效应磁场传感器中低频噪声的测量与研究

曹江伟 王锐 王颖 白建民 魏福林

引用本文:
Citation:

隧穿磁电阻效应磁场传感器中低频噪声的测量与研究

曹江伟, 王锐, 王颖, 白建民, 魏福林

Measurement and study of low-frequency noise in TMR magnetic field sensor

Cao Jiang-Wei, Wang Rui, Wang Ying, Bai Jian-Min, Wei Fu-Lin
PDF
导出引用
  • 基于隧穿磁电阻效应(TMR)的磁场传感器具有很高的磁场灵敏度, 但同时噪声也较大,有效抑制TMR磁场传感器的噪声, 尤其是低频噪声的抑制对于其在高灵敏度要求场合的应用具有重要的意义. 本文采用高精度数据采集卡搭建了噪声测量系统, 测量了全桥结构TMR磁场传感器的噪声频谱图, 发现TMR传感器的噪声在低频段表现为1/f特性, 同时噪声功率谱密度与工作电流平方成正比关系; 低频噪声在自由层翻转区间内噪声急剧增大, 证明了1/f噪声主要来源于磁噪声, 这一结果为TMR磁场传感器的噪声特性优化指明了方向.
    The magnetic field sensor based on tunnel magnetoresistance (TMR) effect has potential applications in various fields due to its very high field sensitivity and low power comsuption. However, the resolution of magnetic sensor depends on not only field sensitivity, but also intrinsic noise level. The intrinsic noise of an electronic device is normally frequency-dependent and increases in low frequency range. In a magnetic tunneling system, thermal magnetization fluctuation in the magnetic layer can couple to the resistance through the spin-dependent tunneling effect and create low-frequency magnetic noise. In addition, the charge trapping effect in the oxide barrier may also contribute to the external low-frequency noise. Therefore, the depression of the noise in TMR magnetic field sensor, especially the low-frequency noise, is extremely important for the application with high resolution requirement. In this work, a low-frequency noise measurement system for TMR magnetic sensor is built by using a highaccuracy data acquisition card and a low noise preamplifier. After subtracting the circuit noise from the measured noise, the noise spectral patterns of TMR magnetic field sensor with a full Wheatstone bridge structure are obtained under various bias currents and external magnetic fields. It is found that the noise spectra of the TMR sensor exhibit a clear 1/f character in the low frequency region and the noise power spectral intensity is proportional to the square of the bias current. By fitting the power spectral density of the noise versus frequency in the TMR sensor, the Hooge parameters are obtained, which remain unchanged in the measurement. The noise intensity increases abruptly in the magnetization switching region of the free layer in magnetic tunnel junction, suggesting that the 1/f noise mostly comes from the magnetic noise. In a magnetic hysteresis loop, this noise power is strongly field-dependent, which is due to thermal magnetization fluctuations in magnetic layers. We attribute this magnetic fluctuation to thermally excited hopping of the magnetic domain wall between the pinning sites. Finally, according to the R-H transfer curves and the measured noise spectra of the TMR sensor, the detectable minimum magnetic fields of the sensor are 9 nT and 1.3 nT at 100 Hz and 4 kHz with 1 V input voltage, respectively. These results pave a way for optimizing the noise properties of TMR magnetic sensors.
      通信作者: 曹江伟, caojw@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61102002, 51371101) 资助的课题.
      Corresponding author: Cao Jiang-Wei, caojw@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61102002, 51371101).
    [1]

    Edelstein A 2007 J. Phys. Condens.Matter 19 165217

    [2]

    Wu S B, Chen S, Li H, Yang X F 2012 Acta Phys. Sin. 61 097504 (in Chinese) [吴少兵, 陈实, 李海, 杨晓非 2012 61 097504]

    [3]

    Egelhoff Jr W F, Pong P W T, Unguris J, McMichael R D, Nowak E R, Edelstein A S, Burnette J E, Fischer G A 2009 Sens Actualtors A 155 217

    [4]

    Freitas P P, Ferreira R, Cardoso S Cardoso F 2007 J. Phys. Condens.Matter 19 165221

    [5]

    Jiang L, Nowak E R, Scott P E, Johnson J, Slaughter J M, Sun J J, Dave R W 2004 Phys. Rev. B 69 054407

    [6]

    Guo H, Tang W, Liu L, Wei J, Li D, Feng J, Han X 2015 Chin. Phys. B 24 078504

    [7]

    Ingvarson S, Xiao G, Parkin S, Gallagher W, Grinstein G, Koch R 2000 Phys. Rev. Lett. 85 3289

    [8]

    Ren C, Liu X, Schrag B Xiao G 2004 Phys. Rev. B 69 104405

    [9]

    Reed D S, Nordman C, Daughton J M 2001 IEEE Trans. Magn. 37 2028

    [10]

    Scola J, Polovy H, Fermon C, Pannetier-Lecoeur M, Feng G, Fahy K Coey J M D 2007 Appl.Phys. Lett. 90 252501

    [11]

    Pannetier M, Fermon C, Goff G L, Simola J, Kerr E, Coey J M D 2005 J. Magn. Magn. Mater. 290-291 1158

    [12]

    Herranz D, Bonell F, Gomez-Ibarlucea A, Andrieu S, Montaigne F, Villar R Tiusan C Aliev F G 2010 Appl. Phys. Lett. 96 202501

    [13]

    Mazumdar D, Liu X, Schrag B D, Shen W, Carter M, Xiao G 2007 J. Appl. Phys. 101 09B502

    [14]

    Liou S H, Zhang R, Russek S E, Yuan L, Halloran S T, Pappas D P 2008 J. Appl. Phys. 103 07E920

    [15]

    Stearrett R, Wang W G, Shah L R, Gokce Aisha, Xiao J Q, Nowak E R 2010 J. Appl. Phys. 107 064502

    [16]

    Diao Z, Feng J F, Kurt H 2010 Appl. Phys. Lett. 96 202506

    [17]

    Motchenbacher C D, Connelly J A 1993 Low-Noise Electronic System Design (New York: John Wiley and Sons, Inc.) pp38-52

  • [1]

    Edelstein A 2007 J. Phys. Condens.Matter 19 165217

    [2]

    Wu S B, Chen S, Li H, Yang X F 2012 Acta Phys. Sin. 61 097504 (in Chinese) [吴少兵, 陈实, 李海, 杨晓非 2012 61 097504]

    [3]

    Egelhoff Jr W F, Pong P W T, Unguris J, McMichael R D, Nowak E R, Edelstein A S, Burnette J E, Fischer G A 2009 Sens Actualtors A 155 217

    [4]

    Freitas P P, Ferreira R, Cardoso S Cardoso F 2007 J. Phys. Condens.Matter 19 165221

    [5]

    Jiang L, Nowak E R, Scott P E, Johnson J, Slaughter J M, Sun J J, Dave R W 2004 Phys. Rev. B 69 054407

    [6]

    Guo H, Tang W, Liu L, Wei J, Li D, Feng J, Han X 2015 Chin. Phys. B 24 078504

    [7]

    Ingvarson S, Xiao G, Parkin S, Gallagher W, Grinstein G, Koch R 2000 Phys. Rev. Lett. 85 3289

    [8]

    Ren C, Liu X, Schrag B Xiao G 2004 Phys. Rev. B 69 104405

    [9]

    Reed D S, Nordman C, Daughton J M 2001 IEEE Trans. Magn. 37 2028

    [10]

    Scola J, Polovy H, Fermon C, Pannetier-Lecoeur M, Feng G, Fahy K Coey J M D 2007 Appl.Phys. Lett. 90 252501

    [11]

    Pannetier M, Fermon C, Goff G L, Simola J, Kerr E, Coey J M D 2005 J. Magn. Magn. Mater. 290-291 1158

    [12]

    Herranz D, Bonell F, Gomez-Ibarlucea A, Andrieu S, Montaigne F, Villar R Tiusan C Aliev F G 2010 Appl. Phys. Lett. 96 202501

    [13]

    Mazumdar D, Liu X, Schrag B D, Shen W, Carter M, Xiao G 2007 J. Appl. Phys. 101 09B502

    [14]

    Liou S H, Zhang R, Russek S E, Yuan L, Halloran S T, Pappas D P 2008 J. Appl. Phys. 103 07E920

    [15]

    Stearrett R, Wang W G, Shah L R, Gokce Aisha, Xiao J Q, Nowak E R 2010 J. Appl. Phys. 107 064502

    [16]

    Diao Z, Feng J F, Kurt H 2010 Appl. Phys. Lett. 96 202506

    [17]

    Motchenbacher C D, Connelly J A 1993 Low-Noise Electronic System Design (New York: John Wiley and Sons, Inc.) pp38-52

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能.  , 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [3] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥. 基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较.  , 2022, 71(23): 238502. doi: 10.7498/aps.71.20221278
    [4] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展.  , 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [5] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析.  , 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [6] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为.  , 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [7] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究.  , 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [8] 曹亚庆, 黄火林, 孙仲豪, 李飞雨, 白洪亮, 张卉, 孙楠, Yung C.Liang. 基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器.  , 2019, 68(15): 158502. doi: 10.7498/aps.68.20190413
    [9] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性.  , 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [10] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法.  , 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [11] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征.  , 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [12] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响.  , 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [13] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性.  , 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [14] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析.  , 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [15] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析.  , 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [16] 吴少兵, 陈实, 李海, 杨晓非. TMR与GMR传感器1/f噪声的研究进展.  , 2012, 61(9): 097504. doi: 10.7498/aps.61.097504
    [17] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响.  , 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [18] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究.  , 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [19] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定.  , 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [20] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究.  , 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
计量
  • 文章访问数:  8456
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-22
  • 修回日期:  2015-12-23
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map