-
Low-frequency noise in the hydrogenated amorphous silicon thin film transistor is investigated in this paper. The drain current noise spectral density shows a 1/fγ (γ ≈ 0.92, f represents frequency) behavior which ascribes to fluctuations of the interfacial trapped charges due to the dynamic trapping and de-trapping of free carriers into slow oxide traps and localized traps. The normalized noise has the power law dependence on overdrive voltage, and the power law coefficient is about -1 which illustrates that the flicker noise is dominated by mobility fluctuation mechanism. By considering the contact resistance, and emission and trapping processes of carriers between localized states in the Si/SiNx interface, the variation of low frequency noise with drain current is analyzed and fitted by use of the theory of carrier number fluctuation with correlated mobility fluctuation (ΔN-Δμ model). Furthermore, the relationship between surface band-bending and gate voltage is extracted based on subthreshold current-voltage characteristics, and thus the density of localized states is then extracted through the measurement of drain current noise power spectral density. The experimental results show an exponential localized state distribution in the band-gap while densities of two defect modes at the bottom of conduction band NT1 and NT2 are about 6.31×1018 and 1.26×1018 cm-3·eV-1, and corresponding characteristic temperatures TT1 and TT2 are about 192 and 290 K, which is similar to the reported distribution of tail states in the amorphous silicon layer. Finally, the average Hooge's parameter is extracted to estimate the quality of devices and materials.
-
Keywords:
- amorphous silicon /
- thin film transistor /
- low-frequency noise /
- density of localized state
[1] Nathan A, Kumar A, Sakariya K, Servati P, Sambandan S, Striakhilev D 2004 IEEE J. Solid-State Circ. 39 1477
[2] Hu Z J, Wang L L, Liao C W, Zeng L M, Lee C Y, Lien A, Zhang S D 2015 IEEE Trans. Electron Dev. 62 4037
[3] Deane S, Wehrspohn R B, Powell M J 1998 Phys. Rev. B 58 12625
[4] He H Y, He J, Deng W L, Wang H, Liu Y, Zheng X R 2014 IEEE Trans. Electron Dev. 61 3744
[5] Liu Y, Yao R H, Li B, Deng W L 2008 J. Disp. Technol. 4 180
[6] Rhayem J, Valenza M, Rigaud D, Szydlo N, Lebrun H 1998 J. Appl. Phys. 83 3660
[7] Rigaud D, Valenza M, Rhayem J 2002 IET Proc. Circuits Devices Syst. 149 75
[8] Hatzopoulos A T, Arpatzanis N, Tassis H, Dimitriadis C A, Templier F, Oudwan M, Kamarinos G 2007 Solid-State Electron. 51 726
[9] Tai Y H, Chang C Y, Hsieh C L, Yang Y H, Chao W K, Chen H E 2014 IEEE Electron Dev. Lett. 35 229
[10] Jung K D, Kim Y C, Park B G, Shin H, Lee J D 2009 IEEE Trans. Electron Dev. 56 431
[11] Chen C Y, Kanicki J 1998 Solid-State Electron. 42 705
[12] Xu Y, Minari T, Tsukagoshi K, Gwoziecki R, Coppard R, Balestra F, Chroboczek J A, Ghibaudo G 2010 Appl. Phys. Lett. 97 033503
[13] Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512
[14] Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 64 137101]
[15] Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Dev. Lett. 34 57
[16] Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Dev. Lett. 34 1521
[17] Servati P, Nathan A 2002 IEEE Trans. Electron Dev. 49 812
[18] Wang J, Liu Y, Liu Y R, Wu W J, Luo X Y, Liu K, Li B, En Y F 2016 Acta Phys. Sin. 65 128501 (in Chinese)[王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞 2016 65 128501]
[19] Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Dev. 36 1773
[20] Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos G 1999 J. Appl. Phys. 85 3934
[21] Hooge F N 1994 IEEE Trans. Electron Dev. 41 1926
[22] Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese)[刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 63 098503]
[23] Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518
[24] Ghibaudo G, Roux Q, Dguyen-Dug C H, Balestra F, Brini J 1991 Phys. Stat. Sol. 124 571
[25] Choi H S, Jeon S, Kim H, Shin J, Kim C, Chung U I 2011 IEEE Trans. Electron Dev. 32 1083
[26] Dimitriadis C A, Farmakis F A, Kamarinos G, Brini J 2002 J. Appl. Phys. 91 9919
[27] Ghibaudo G, Boutchacha T 2002 Microelectron. Relia. 42 573
[28] Vandamme L K J 1994 IEEE Trans. Electron Dev. 41 2176
[29] Delker C J, Zi Y L, Yang C, Jane D B 2013 IEEE Trans. Electron Dev. 60 2900
[30] He H Y, Zheng X R, Zhang S D 2015 IEEE Electron. Dev. Lett. 36 1056
[31] Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367
[32] Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506
[33] Vandamme L K J, Hooge F N 2008 IEEE Trans. Electron Dev. 55 3070
[34] Mercha A, Pichon L, Carin R, Mourgues K, Bonnaud O 2001 Thin Solid Films 383 303
[35] Vandamme L K J, Feyaerts R, Trefan G, Detcheverry C 2002 J. Appl. Phys. 91 719
-
[1] Nathan A, Kumar A, Sakariya K, Servati P, Sambandan S, Striakhilev D 2004 IEEE J. Solid-State Circ. 39 1477
[2] Hu Z J, Wang L L, Liao C W, Zeng L M, Lee C Y, Lien A, Zhang S D 2015 IEEE Trans. Electron Dev. 62 4037
[3] Deane S, Wehrspohn R B, Powell M J 1998 Phys. Rev. B 58 12625
[4] He H Y, He J, Deng W L, Wang H, Liu Y, Zheng X R 2014 IEEE Trans. Electron Dev. 61 3744
[5] Liu Y, Yao R H, Li B, Deng W L 2008 J. Disp. Technol. 4 180
[6] Rhayem J, Valenza M, Rigaud D, Szydlo N, Lebrun H 1998 J. Appl. Phys. 83 3660
[7] Rigaud D, Valenza M, Rhayem J 2002 IET Proc. Circuits Devices Syst. 149 75
[8] Hatzopoulos A T, Arpatzanis N, Tassis H, Dimitriadis C A, Templier F, Oudwan M, Kamarinos G 2007 Solid-State Electron. 51 726
[9] Tai Y H, Chang C Y, Hsieh C L, Yang Y H, Chao W K, Chen H E 2014 IEEE Electron Dev. Lett. 35 229
[10] Jung K D, Kim Y C, Park B G, Shin H, Lee J D 2009 IEEE Trans. Electron Dev. 56 431
[11] Chen C Y, Kanicki J 1998 Solid-State Electron. 42 705
[12] Xu Y, Minari T, Tsukagoshi K, Gwoziecki R, Coppard R, Balestra F, Chroboczek J A, Ghibaudo G 2010 Appl. Phys. Lett. 97 033503
[13] Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512
[14] Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 64 137101]
[15] Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Dev. Lett. 34 57
[16] Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Dev. Lett. 34 1521
[17] Servati P, Nathan A 2002 IEEE Trans. Electron Dev. 49 812
[18] Wang J, Liu Y, Liu Y R, Wu W J, Luo X Y, Liu K, Li B, En Y F 2016 Acta Phys. Sin. 65 128501 (in Chinese)[王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞 2016 65 128501]
[19] Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Dev. 36 1773
[20] Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos G 1999 J. Appl. Phys. 85 3934
[21] Hooge F N 1994 IEEE Trans. Electron Dev. 41 1926
[22] Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese)[刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 63 098503]
[23] Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518
[24] Ghibaudo G, Roux Q, Dguyen-Dug C H, Balestra F, Brini J 1991 Phys. Stat. Sol. 124 571
[25] Choi H S, Jeon S, Kim H, Shin J, Kim C, Chung U I 2011 IEEE Trans. Electron Dev. 32 1083
[26] Dimitriadis C A, Farmakis F A, Kamarinos G, Brini J 2002 J. Appl. Phys. 91 9919
[27] Ghibaudo G, Boutchacha T 2002 Microelectron. Relia. 42 573
[28] Vandamme L K J 1994 IEEE Trans. Electron Dev. 41 2176
[29] Delker C J, Zi Y L, Yang C, Jane D B 2013 IEEE Trans. Electron Dev. 60 2900
[30] He H Y, Zheng X R, Zhang S D 2015 IEEE Electron. Dev. Lett. 36 1056
[31] Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367
[32] Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506
[33] Vandamme L K J, Hooge F N 2008 IEEE Trans. Electron Dev. 55 3070
[34] Mercha A, Pichon L, Carin R, Mourgues K, Bonnaud O 2001 Thin Solid Films 383 303
[35] Vandamme L K J, Feyaerts R, Trefan G, Detcheverry C 2002 J. Appl. Phys. 91 719
Catalog
Metrics
- Abstract views: 6433
- PDF Downloads: 205
- Cited By: 0