-
The dipole orientation of single-molecule plays an important role in improving the fluorescence collection efficiency and promises to have applications in super-resolution imaging, protein folding, and Förster resonance energy transfer between fluorophores. However, these applications are realized usually by precisely manipulating the orientation of the dipole moment of single molecules. Here, the dipole orientation of 1,1′-dioctadecyl-3,3,3′,3′,-tetramethylindodicarbocyanine (DiD) single molecules with the permanent dipole moment of 14.9 D is manipulated by using an external electric field of 3500 V/mm. Single DiD molecules are prepared by using mixed solvent of chloroform and dimethyl sulfoxide. The dipole orientation of single molecules is manipulated by an external electric field during the evaporation of solvent. The fluorescence of single molecules is measured by splitting the fluorescence collected by an objective into the S-polarized and P-polarized beams, and the fluorescence polarization of single molecules can be calculated by measuring the intensities of two orthogonal channels (IS and IP). The distribution of dipole orientation angle (α) for single DiD molecules in poly-(methyl methacrylate) (PMMA) film is analyzed statistically, and its changes are compared under different electric fields. It is found that the dipole orientation angle α of single DiD molecules in the PMMA film without applying electric field obeys a single-peak Gaussian distribution with the most probable value of 41°, which results from the fluorescence dichroism signal of the high numerical aperture objective. Applying a perpendicular electric field to the surface of single-molecule sample, the distribution of dipole orientation angle α of single DiD molecules can be still fitted by a single-peak Gaussian function with the most probable value of 44.2°. The dipole orientation of single DiD molecules under the perpendicular electric field changes little. However, by applying a parallel electric field to the surface of single-molecule sample, the dipole orientation angle α of single DiD molecules changes prominently. It obeys a two-peak Gaussian distribution with the most probable values of ~ 32° and 55.5°, indicating that the orientation polarization of the dipole moment occurs to the single DiD molecules in PMMA film. The dipole orientation of single polar molecules tends to the parallel electric field in this case.
-
Keywords:
- single molecule /
- dipole orientation /
- electric field manipulation /
- polarization property
[1] Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar
[2] Gregorio G G, Masureel M, Hilger D, Terry D S, Juette M, Zhao H, Zhou Z, Perez-Aguilar J M, Hauge M, Mathiasen S, Javitch J A, Weinstein H, Kobilka B K, Blanchard S C 2017 Nature 547 68Google Scholar
[3] Benhaim M, Lee K K 2018 Cell 174 775Google Scholar
[4] 高岩, 陈瑞云, 吴瑞祥, 张国峰, 肖连团, 贾锁堂 2013 62 233601Google Scholar
Gao Y, Chen R Y, Wu R X, Zhang G F, Xiao L T, Jia S T 2013 Acta Phys. Sin. 62 233601Google Scholar
[5] Ha T, Enderle T, Chemla D S, Selvin P R, Weiss S 1996 Phys. Rev. Lett. 77 3979Google Scholar
[6] Backer A S, Lee M Y, Moerner W E 2016 Optica 3 659Google Scholar
[7] Sikorski Z, Davis L M 2008 Opt. Express 16 3660Google Scholar
[8] Backlund M P, Lew M D, Backer A S, Sahl S J, Moerner W E 2014 Chem. Phys. Chem. 15 587Google Scholar
[9] Schroder C, Steinhauser O, Sasisanker P, Weingartner H 2015 Phys. Rev. Lett. 114 128101Google Scholar
[10] Lambert C, Koch F, Volker S F, Schmiedel A, Holzapfel M, Humeniuk A, Rohr M I, Mitric R, Brixner T 2015 J. Am. Chem. Soc. 137 7851Google Scholar
[11] Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601Google Scholar
[12] Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar
[13] Gersen H, García-Parajó M F, Novotny L, Veerman J A, Kuipers L, van Hulst N F 2000 Phys. Rev. Lett. 85 5312Google Scholar
[14] Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308Google Scholar
[15] Huang Y L, Lu Y, Niu T C, Huang H, Kera S, Ueno N, Wee A T S, Chen W 2012 Small 8 1423Google Scholar
[16] Zimmermann R J P, Hettich C, Gerhardt I, Renn A, Sandoghdar V 2004 Chem. Phys. Lett. 387 490Google Scholar
[17] Lee K G, Chen X W, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, Götzinger S 2011 Nat. Photon. 5 166Google Scholar
[18] Shaik S, Ramanan R, Danovich D, Mandal D 2018 Chem. Soc. Rev. 47 5125Google Scholar
[19] Wang Z, Danovich D, Ramanan R, Shaik S 2018 J. Am. Chem. Soc. 140 13350Google Scholar
[20] Sajadi M, Wolf M, Kampfrath T 2017 Nat. Commun. 8 14963Google Scholar
[21] Kato C, Machida R, Maruyama R, Tsunashima R, Ren X M, Kurmoo M, Inoue K, Nishihara S 2018 Angew. Chem. Int. Ed. 57 13429Google Scholar
[22] Wu R, Chen R, Qin C, Gao Y, Qiao Z, Zhang G, Xiao L, Jia S 2015 Chem. Commun. 51 7368Google Scholar
[23] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201Google Scholar
Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201Google Scholar
[24] Wei C Y, Kim Y H, Darst R K, Rossky P J, Vandenbout D A 2005 Phys. Rev. Lett. 95 173001Google Scholar
[25] Sartori S S, Feyter S D, Hofkens J, Auweraer M V, Schryver F D, Brunner K, Hofstraat J W 2003 Macromolecules 36 500Google Scholar
[26] Rozhkov I, Barkai E 2005 Phys. Rev. A 71 033810Google Scholar
[27] Cassone G, Giaquinta P V, Saija F, Saitta A M 2015 J. Chem. Phys. 142 054502Google Scholar
-
图 1 (a) DiD分子的结构式, 红色箭头表示其固有偶极取向; (b)垂直于单分子样品表面电场和平行于样品表面电场操控单分子示意图
Figure 1. (a) Structure of DiD dye molecule with its dipole orientation indicated by a red arrow; (b) schematic of single-molecule sample manipulated by applying a perpendicular or parallel electric field to the surface of single-molecule sample, respectively.
图 2 DiD单分子的偶极取向与偏振测量 (a)在18 μm × 18 μm区域内DiD单分子的荧光成像; (b)任意偶极取向的DiD单分子的S偏振及P偏振方向荧光探测示意图, 其中Obj是物镜, PBS是偏振分束棱镜; (c)成像图(a)中红色圆圈标记的DiD分子的S和P偏振方向的荧光强度轨迹图; (d)荧光偏振方向α随时间的变化; (e) DiD分子光漂白前荧光偏振方向的统计, 最可几值为48.8°
Figure 2. Fluorescence measurement of single DiD molecules: (a) Fluorescence image of single DiD molecules in 18 μm × 18 μm area; (b) schematic view of the S-polarized and P-polarized fluorescence of arbitrary dipole moment for single-molecule (Obj, objective; PBS, polarized beam splitter); (c) fluorescence trajectories of single DiD molecule indicated by the red circle in panel (a) in S and P polarization; (d) the relationship between fluorescence polarization and time; (e) the statistics of fluorescence polarization with the most probable value being 48.8°.
图 3 DiD单分子在不同情况下取向极化的效果 (a)未加电场; 3500 V/mm的(b)垂直电场取向极化和(c)平行电场取向极化; 荧光的偏振方向α的统计峰值分别是 (a) 41.0° ± 21.9°, (b) 44.2° ± 26.3°, (c) 32.0° ± 13.5°和55.5° ± 21.6°
Figure 3. Polarized orientation for single DiD molecules under the different conditions: (a) Non-electric field; (b) perpendicular and (c) parallel electric field of 3500 V/mm. The peaks of α are (a) 41.0° ± 21.9°, (b) 44.2° ± 26.3°, (c) 32.0° ± 13.5° and 55.5°±21.6°, respectively.
图 4 单分子偶极取向在外电场作用下的极化示意图 (a) 电场方向与分子偶极取向同向; (b) 电场方向垂直于单分子偶极取向; (c)电场作用于任意取向单分子
Figure 4. Simplified scheme of the polarization of the dipole orientation of single-molecule under the influence of external electric field. The directions of the electric field are parallel (a), perpendicular (b), and arbitrary (c) to the dipole orientation of single-molecule, respectively.
-
[1] Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar
[2] Gregorio G G, Masureel M, Hilger D, Terry D S, Juette M, Zhao H, Zhou Z, Perez-Aguilar J M, Hauge M, Mathiasen S, Javitch J A, Weinstein H, Kobilka B K, Blanchard S C 2017 Nature 547 68Google Scholar
[3] Benhaim M, Lee K K 2018 Cell 174 775Google Scholar
[4] 高岩, 陈瑞云, 吴瑞祥, 张国峰, 肖连团, 贾锁堂 2013 62 233601Google Scholar
Gao Y, Chen R Y, Wu R X, Zhang G F, Xiao L T, Jia S T 2013 Acta Phys. Sin. 62 233601Google Scholar
[5] Ha T, Enderle T, Chemla D S, Selvin P R, Weiss S 1996 Phys. Rev. Lett. 77 3979Google Scholar
[6] Backer A S, Lee M Y, Moerner W E 2016 Optica 3 659Google Scholar
[7] Sikorski Z, Davis L M 2008 Opt. Express 16 3660Google Scholar
[8] Backlund M P, Lew M D, Backer A S, Sahl S J, Moerner W E 2014 Chem. Phys. Chem. 15 587Google Scholar
[9] Schroder C, Steinhauser O, Sasisanker P, Weingartner H 2015 Phys. Rev. Lett. 114 128101Google Scholar
[10] Lambert C, Koch F, Volker S F, Schmiedel A, Holzapfel M, Humeniuk A, Rohr M I, Mitric R, Brixner T 2015 J. Am. Chem. Soc. 137 7851Google Scholar
[11] Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601Google Scholar
[12] Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar
[13] Gersen H, García-Parajó M F, Novotny L, Veerman J A, Kuipers L, van Hulst N F 2000 Phys. Rev. Lett. 85 5312Google Scholar
[14] Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308Google Scholar
[15] Huang Y L, Lu Y, Niu T C, Huang H, Kera S, Ueno N, Wee A T S, Chen W 2012 Small 8 1423Google Scholar
[16] Zimmermann R J P, Hettich C, Gerhardt I, Renn A, Sandoghdar V 2004 Chem. Phys. Lett. 387 490Google Scholar
[17] Lee K G, Chen X W, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, Götzinger S 2011 Nat. Photon. 5 166Google Scholar
[18] Shaik S, Ramanan R, Danovich D, Mandal D 2018 Chem. Soc. Rev. 47 5125Google Scholar
[19] Wang Z, Danovich D, Ramanan R, Shaik S 2018 J. Am. Chem. Soc. 140 13350Google Scholar
[20] Sajadi M, Wolf M, Kampfrath T 2017 Nat. Commun. 8 14963Google Scholar
[21] Kato C, Machida R, Maruyama R, Tsunashima R, Ren X M, Kurmoo M, Inoue K, Nishihara S 2018 Angew. Chem. Int. Ed. 57 13429Google Scholar
[22] Wu R, Chen R, Qin C, Gao Y, Qiao Z, Zhang G, Xiao L, Jia S 2015 Chem. Commun. 51 7368Google Scholar
[23] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201Google Scholar
Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201Google Scholar
[24] Wei C Y, Kim Y H, Darst R K, Rossky P J, Vandenbout D A 2005 Phys. Rev. Lett. 95 173001Google Scholar
[25] Sartori S S, Feyter S D, Hofkens J, Auweraer M V, Schryver F D, Brunner K, Hofstraat J W 2003 Macromolecules 36 500Google Scholar
[26] Rozhkov I, Barkai E 2005 Phys. Rev. A 71 033810Google Scholar
[27] Cassone G, Giaquinta P V, Saija F, Saitta A M 2015 J. Chem. Phys. 142 054502Google Scholar
Catalog
Metrics
- Abstract views: 10677
- PDF Downloads: 132
- Cited By: 0