-
本文对InGaN/GaN多量子阱结构发光二极管开启后的电流噪声进行了测试, 结合低频电流噪声的特点和载流子之间的复合机理, 研究了低频电流噪声功率谱密度与发光二极管发光转变机理之间的关系. 结论表明, 当电流从0.1 mA到10 mA逐渐增大的过程中, InGaN/GaN发光二极管的电流噪声行为从产生-复合噪声逐渐接近于低频1/f噪声, 载流子的复合机理从非辐射复合过渡为电子与空穴之间载流子数的辐射复合, 并具有标准1/f噪声的趋势, 此时多量子阱中的电子和空穴之间的复合趋向于稳定. 本文的结论提供了一种表征InGaN/GaN多量子阱发光二极管发光机理转变的有效方法, 为进一步研究发光二极管中载流子的复合机理、优化和设计发光二极管、提高其发光量子效率提供理论依据.In this paper, we measure the emission transition mechanisms in InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LED) using low-frequency current noise from 0.1 to 10 mA. According to the characteristics of the low-frequency current noise and the emission mechanisms of InGaN/GaN LEDs, we study the relationships between low-frequency current noise and current flows through the LEDs. Conclusions indicate that the low-frequency current noise is increased with the increasing current from 0.1 to 10 mA. With a lower current (I10 mA) it is the 1/f noise that dominates in LEDs, so there exists an emission transition mechanism in InGaN/GaN MQW LEDs between 0.1 and 10 mA, showing that the mechanism of the carrier recombination changes from non-radiative recombination to a stable fluctuation of carrier numbers. Conclusions of this paper provide an effective method to characterize the emission transition mechanisms, optimize the design of LED so as to improve the quantum efficiency for InGaN/GaN MQW LEDs.
-
Keywords:
- low-frequency noise /
- light-emitting diode /
- recombination mechanism /
- emission efficiency
[1] Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851
[2] Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353
[3] Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457
[4] Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687
[5] Nakamura S, Senoh M, Mukai T 1993 Jpn. J. Appl. Phys. 32 L8
[6] Chang M H, Das D, Varde P V, Pecht M 2012 Microelectron. Reliab. 52 5762
[7] Katsushi Akita, Takashi Kyono, Yusuke Yoshizumi, Hiroyuki Kitabayashi, Koji Katayama 2007 J. Appl. Phys. 101 033104
[8] Yen-Kuang Kuo, Tsun-Hsin Wang, Jih-Yuan Chang, Miao-Chan Tsai 2011 Appl. Phys. Lett. 99 091107
[9] Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502
[10] Hu J, Du L, Zhuang Y Q, Bao J l, Zhou J 2006 Acta Phys.Sin. 55 1384 (in Chinese) [胡瑾, 杜磊, 庄奕琪, 包军林, 周江 2006 55 1384]
[11] Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]
[12] Sawyer S, Rumyantsev S L, Shur M S, Pala N, Bilenko Yu, Zhang J P, Hu X, Lunev A, Deng J, Gaska R 2006 J. Appl. Phys. 100 034504
[13] Vilius Palenskis, Jonas Matukas, Sandra Pralgauskaité 2010 Solid-State Electronics 54 781
[14] Rumyantsev S L, Wetzel C, Shur M S 2006 J. Appl. Phys. 100 084506
[15] Jevtić M M 2004 Microelectron. Reliab. 44 1123
[16] Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing House Of Electronics Industry) p216-217 (in Chinese) [江剑平, 孙成城 编著 2010 异质结原理与器件 (北京: 电子工业出版社) 第216–217页]
[17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B: Condensed Matter 404 4896
[18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714
[19] Chernyakov A E, Sobolev M M, Ratnikov V V, Shmidt N M, Yakimovb E B 2009 Superlattices Microstructures 45 301
[20] Wong H 2003 Microelectron. Reliab 43 585
-
[1] Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851
[2] Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353
[3] Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457
[4] Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687
[5] Nakamura S, Senoh M, Mukai T 1993 Jpn. J. Appl. Phys. 32 L8
[6] Chang M H, Das D, Varde P V, Pecht M 2012 Microelectron. Reliab. 52 5762
[7] Katsushi Akita, Takashi Kyono, Yusuke Yoshizumi, Hiroyuki Kitabayashi, Koji Katayama 2007 J. Appl. Phys. 101 033104
[8] Yen-Kuang Kuo, Tsun-Hsin Wang, Jih-Yuan Chang, Miao-Chan Tsai 2011 Appl. Phys. Lett. 99 091107
[9] Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502
[10] Hu J, Du L, Zhuang Y Q, Bao J l, Zhou J 2006 Acta Phys.Sin. 55 1384 (in Chinese) [胡瑾, 杜磊, 庄奕琪, 包军林, 周江 2006 55 1384]
[11] Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]
[12] Sawyer S, Rumyantsev S L, Shur M S, Pala N, Bilenko Yu, Zhang J P, Hu X, Lunev A, Deng J, Gaska R 2006 J. Appl. Phys. 100 034504
[13] Vilius Palenskis, Jonas Matukas, Sandra Pralgauskaité 2010 Solid-State Electronics 54 781
[14] Rumyantsev S L, Wetzel C, Shur M S 2006 J. Appl. Phys. 100 084506
[15] Jevtić M M 2004 Microelectron. Reliab. 44 1123
[16] Jiang J P, Sun C C 2010 Heterojunction Principles and Devices (Beijing: Publishing House Of Electronics Industry) p216-217 (in Chinese) [江剑平, 孙成城 编著 2010 异质结原理与器件 (北京: 电子工业出版社) 第216–217页]
[17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B: Condensed Matter 404 4896
[18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714
[19] Chernyakov A E, Sobolev M M, Ratnikov V V, Shmidt N M, Yakimovb E B 2009 Superlattices Microstructures 45 301
[20] Wong H 2003 Microelectron. Reliab 43 585
计量
- 文章访问数: 6564
- PDF下载量: 713
- 被引次数: 0