-
Low frequency noise in the partially depleted silicon-on-insulator (SOI) NMOS device is investigated in this paper. The experimental results show low frequency noise behaviors are in good consistence with classical noise model. Based on McWhorter model, the low frequency noise in the SOI device results from the exchange of carriers between channel and oxide. The densities of trapped charges in the front gate oxide and buried oxide are extracted. Due to the difference between manufacture processes, the extracted density of trapped charges in the buried oxide (Nt=8×1017 eV-1·cm-3) is larger than that in the gate oxide (Nt=2.767×1017 eV-1·cm-3), and the result is in good agreement with testing result of transfer characteristics in part 2. Based on the charge tunneling mechanism, the spatial distribution of trapped charges in the gate oxide and buried oxide are extracted by using the tunneling attenuation coefficient (λ=0.1 nm for SiO2) and time constant (τ0=10-10 s), and the result also proves that the trap in buried oxide is larger than that in gate oxide. In addition, the influence of channel length on the low frequency noise in the SOI device is discussed. The variations of normalized channel current noise power spectral density with channel length are investigated at four frequencies(10 Hz, 25 Hz, 50 Hz, and 100 Hz). The experimental results show that the normalized noise power spectral density decreases linearly with the increase of channel length, which indicates the low frequency noise of SOI device is mainly caused by the flicker noise in the channel, and the contribution of source/drain contact and parasitic resistances could be ignored. Finally, the dependences of back gate voltage on the front gate threshold voltage, front channel current and front channel noise are discussed by considering the charge coupling effect. The experimental results show the measured channel current and channel noise with applying front gate voltage and back gate voltage simultaneously are larger than those with applying the front gate voltage and back gate voltage separately.
-
Keywords:
- silicon-on-insulator device /
- partially depleted /
- low frequency noise /
- defect
[1] Eggert D, Huebler P, Huerrich A, Kuerck H, Budde W, Vorwerk M 1997 IEEE Trans. Electron. Dev. 44 1981
[2] Rozeau O, Jomaah J, Haendler S, Boussey J, Balestra F 2000 Analog Integr. Circ. Sign. Process. 25 93
[3] Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 63 098503]
[4] Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518
[5] Alok K, Manoj K P, Sujata P, Gupta A K 2005 J. Semicond. Technol. Sci. 5 187
[6] Akarvardar K, Dufrene B M, Cristoloveanu M, Gentil P, Blalock B J, Mojarradi M M 2006 IEEE Trans. Electron. Dev. 53 829
[7] McWhorter A L 1957 Semiconductor Surface Physics (Philadelphia: University of Pennsylvania Press) pp207-228
[8] Jomaah J, Balestra 2004 IEE Proc. Circ. Dev. Syst. 151 111
[9] Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi A 124 571
[10] Christensson S, Lundstrom I, Svensson C 1968 Solid State Electron. 11 797
[11] Liu Y, Wu W J, En Y F, Wang L, Lei Z F, Wang X H 2014 IEEE Electron. Dev. Lett. 35 369
[12] Jayarman R, Sodini C G 1989 IEEE Trans. Electron. Dev. 36 1773
[13] Lukyanchikova N, Garbar N, Smoianka A 2004 IEEE Electron. Dev. Lett. 25 433
[14] Ohata A, Pretet J, Cristoloveanu S, Zaslavsky A 2005 IEEE Trans. Electron. Dev. 52 124
-
[1] Eggert D, Huebler P, Huerrich A, Kuerck H, Budde W, Vorwerk M 1997 IEEE Trans. Electron. Dev. 44 1981
[2] Rozeau O, Jomaah J, Haendler S, Boussey J, Balestra F 2000 Analog Integr. Circ. Sign. Process. 25 93
[3] Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 63 098503]
[4] Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518
[5] Alok K, Manoj K P, Sujata P, Gupta A K 2005 J. Semicond. Technol. Sci. 5 187
[6] Akarvardar K, Dufrene B M, Cristoloveanu M, Gentil P, Blalock B J, Mojarradi M M 2006 IEEE Trans. Electron. Dev. 53 829
[7] McWhorter A L 1957 Semiconductor Surface Physics (Philadelphia: University of Pennsylvania Press) pp207-228
[8] Jomaah J, Balestra 2004 IEE Proc. Circ. Dev. Syst. 151 111
[9] Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi A 124 571
[10] Christensson S, Lundstrom I, Svensson C 1968 Solid State Electron. 11 797
[11] Liu Y, Wu W J, En Y F, Wang L, Lei Z F, Wang X H 2014 IEEE Electron. Dev. Lett. 35 369
[12] Jayarman R, Sodini C G 1989 IEEE Trans. Electron. Dev. 36 1773
[13] Lukyanchikova N, Garbar N, Smoianka A 2004 IEEE Electron. Dev. Lett. 25 433
[14] Ohata A, Pretet J, Cristoloveanu S, Zaslavsky A 2005 IEEE Trans. Electron. Dev. 52 124
Catalog
Metrics
- Abstract views: 6049
- PDF Downloads: 398
- Cited By: 0