-
SiGe-based electronics possess a promising prospect in the space exploration field owing to a controllable bandgap of SiGe alloys and high compatibility with Si technology, but they may be susceptible to energetic particles in space radiation environments. In order to interpret the potential displacement damage in SiGe-based electronics, Monte Carlo simulations were conducted to investigate the displacement damage in SiGe alloys and SiGe/Si heterostructures induced by 1 ~ 1000 MeV protons. The displacement damage in SiGe alloys was explored via the energy spectra and species as well as the pertinent distribution of damage energy of proton-induced primary knock-on atoms (PKAs), while the displacement damage in SiGe/Si heterostructures was probed by the distribution of damage energy caused by forward- and reverse-incident protons. Low-energy protons (1 ~ 100 MeV) primarily generated Si PKAs and Ge PKAs in SiGe alloys through Coulomb scattering and elastic collisions, and the corresponding damage energy distribution presented a distinct Bragg peak at the end of the proton range. Meanwhile, high-energy protons (300 ~ 1000 MeV) aroused significant inelastic collisions in SiGe alloys, leading to a sequence of other PKA types, and the related damage energy distribution was predominantly located at the front of the proton range. In addition, the damage energy in SiGe/Si heterostructures generally decreased as the proton energy increased, and reverse-incident protons (10 MeV and 100 MeV) caused greater damage energy on the side of Si substrate at the interface than forward-incident protons, resulting in more noticeable fluctuations in damage energy on both sides of the interface than forward-incident protons, which could lead to severe displacement damage. Besides, Ge content could affect the PKA species, damage energy distribution, and nonionizing energy loss. As for high-energy protons, a high Ge content may lead to a great nonionizing energy loss, whereas the Ge content had an insignificant effect on the total damage energy of small-size SiGe/Si heterostructures. In summary, this work indicates that the proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures is closely dependent on the proton energy, and low-energy protons were prone to generate massive self-recoil atoms and induce significant displacement damage in small-size SiGe/Si heterostructures, which will provide conducive insights into research on the displacement damage effect and radiation hardening techniques of SiGe-based electronics.
-
Keywords:
- SiGe /
- Heterostructure /
- Proton /
- Displacement damage /
- Monte Carlo simulation
-
[1] Li L, Bi R, Dong Z Y, Ye C Q, Xie J, Wang C L, Li X M, Pey K L, Li M, Wu X 2024Electron 2 e32
[2] Böck J, Aufinger K, Boguth S, Dahl C, Knapp H, Liebl W, Manger D, Meister T F, Pribil A, Wursthorn J, Lachner R, Heinemann B, Rücker H, Fox A, Barth R, Fischer G, Marschmeyer S, Schmidt D, Trusch A, Wipf C 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM, 26-28 Oct. 2015 p121-124
[3] Li P, Dong Z Y, Guo H X, Zhang F Q, Guo Y X, Peng Z G, He C H 2024Acta Phys. Sin. 73 044301(in Chinese) [李培,董志勇,郭红霞,张凤祁,郭亚鑫,彭治钢,贺朝会2024 73 044301]
[4] Ma Y, Zhang P J, Xu X L, Chen X, Yi X H 2023Microelectron. 53 272(in Chinese) [马羽,张培健,徐学良,陈仙,易孝辉2023微电子学53 272]
[5] Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W 2021J. Environ. Sci. Health, Part C 39 113
[6] Cressler J D 2013IEEE Trans. Nucl. Sci. 60 1992
[7] He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024Acta Phys. Sin. 73 052402(in Chinese) [何欢,白雨蓉,田赏,刘方,臧航,柳文波,李培,贺朝会2024 73 052402]
[8] Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021Acta Phys. Sin. 70 172401(in Chinese) [白雨蓉,李永宏,刘方,廖文龙,何欢,杨卫涛,贺朝会2021 70 172401]
[9] Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003IEEE Trans. Nucl. Sci. 50 1924
[10] Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014Acta Phys. Sin. 63 066102(in Chinese) [朱金辉,韦源,谢红刚,牛胜利,黄流兴2014 63 066102]
[11] Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013Nucl. Instrum. Methods Phys. Res., Sect. B 312 77
[12] Li Y H, Kou B C, Zhao Y L, He C H, Yu Q K 2018At. Energ. Sci. Technol. 52 1735(in Chinese) [李永宏,寇勃晨,赵耀林,贺朝会,于庆奎2018原子能科学技术52 1735]
[13] Fan J Q, Tan Q, Hao J H 2022AIP Adv. 12 095304
[14] Bai Y R, Li P, He H, Liu F, Li W, He C H 2024Acta Phys. Sin. 73 052401(in Chinese) [白雨蓉,李培,何欢,刘方,李薇,贺朝会2024 73 052401]
[15] Shen S S, He C H, Li Y H 2018Acta Phys. Sin. 67 182401(in Chinese) [申帅帅,贺朝会,李永宏2018 67 182401]
[16] Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022J. Terahertz Sci. Electron. Inf. Technol. 20 523(in Chinese) [李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒2022太赫兹科学与电子信息学报20 523]
[17] Zhang J X, Guo H X, Lyu L, Wang X, Pan X Y 2022J. Terahertz Sci. Electron. Inf. Technol. 20 869(in Chinese) [张晋新,郭红霞,吕玲,王信,潘霄宇2022太赫兹科学与电子信息学报20 869]
[18] Pan X Y, Guo H X, Feng Y H, Liu Y N, Zhang J X, Li Z, Luo Y H, Zhang F Q, Wang T, Zhao W, Ding L L, Xu J Y 2022Sci. China: Technol. Sci. 65 1193
[19] Sotskov D I, Elesin V V, Kuznetsov A G, Zhidkov N M, Metelkin I O, Amburkin K M, Amburkin D M, Usachev N A, Boychenko D V, Elesina V V 2020IEEE Trans. Nucl. Sci. 67 2396
[20] Sotskov D I, Kuznetsov A G, Elesin V V, Selishchev I A, Kotov V N, Nikiforov A Y 202121th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 13-17 Sept. 2021 p1-4
[21] Li P, He C H, Guo H X, Li Y H, Wei J N 2022IEEE Trans. Nucl. Sci. 69 1051
[22] Haugerud B M, Pratapgarhwala M M, Comeau J P, Sutton A K, Prakash A P G, Cressler J D, Marshall P W, Marshall C J, Ladbury R L, El-Diwany M, Mitchell C, Rockett L, Bach T, Lawrence R, Haddad N 2006Solid-State Electron. 50 181
[23] Diez S, Lozano M, Pellegrini G, Campabadal F, Diez I, Knoll D, Heinemann B, Ullan M 2009IEEE Trans. Nucl. Sci. 56 1931
[24] Li Z Q, Liu S H, Adekoya M A, Ren X T, Zhang J, Liu S Y, Li L 2021Microelectron. Reliab. 127 114396
[25] Jarrin T, Jay A, Raine M, Mousseau N, Hémeryck A, Richard N 2020IEEE Trans. Nucl. Sci. 67 1273
[26] Xing T, Liu S H, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Chen W, Li K, Zheng X H 2023Radiat. Eff. Defects Solids 178 1384
[27] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016Nucl. Instrum. Methods Phys. Res., Sect. A 835 186
[28] Douglas J P 2004Semicond. Sci. Technol. 19 R75
[29] Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017IEEE Trans. Nucl. Sci. 64 133
[30] Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997IEEE Trans. Nucl. Sci. 44 2150
[31] Mesick K E, Bartlett K D, Coupland D D S, Stonehill L C 2019Nucl. Instrum. Methods Phys. Res., Sect. A 948 162774
[32] Ye E L, Lai Y F, Shen C X, Hou Y J, Nan H J 2025Radiat. Phys. Chem. 228 112417
[33] Robinson M T, Torrens I M 1974Phys. Rev. B 9 5008
[34] Akkerman A, Barak J 2006IEEE Trans. Nucl. Sci. 53 3667
[35] Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H, Chen W 2023Nucl. Instrum. Methods Phys. Res., Sect. B 545 165144
[36] Ziegler J F, Ziegler M D, Biersack J P 2010Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818
Metrics
- Abstract views: 13
- PDF Downloads: 0
- Cited By: 0