Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monte Carlo simulations of proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures

XING Tian LIU Shuhuan WANG Xuan WANG Chao ZHOU Junye ZHANG Ximin CHEN Wei

Citation:

Monte Carlo simulations of proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures

XING Tian, LIU Shuhuan, WANG Xuan, WANG Chao, ZHOU Junye, ZHANG Ximin, CHEN Wei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • SiGe-based electronics possess a promising prospect in the space exploration field owing to a controllable bandgap of SiGe alloys and high compatibility with Si technology, but they may be susceptible to energetic particles in space radiation environments. In order to interpret the potential displacement damage in SiGe-based electronics, Monte Carlo simulations were conducted to investigate the displacement damage in SiGe alloys and SiGe/Si heterostructures induced by 1 ~ 1000 MeV protons. The displacement damage in SiGe alloys was explored via the energy spectra and species as well as the pertinent distribution of damage energy of proton-induced primary knock-on atoms (PKAs), while the displacement damage in SiGe/Si heterostructures was probed by the distribution of damage energy caused by forward- and reverse-incident protons. Low-energy protons (1 ~ 100 MeV) primarily generated Si PKAs and Ge PKAs in SiGe alloys through Coulomb scattering and elastic collisions, and the corresponding damage energy distribution presented a distinct Bragg peak at the end of the proton range. Meanwhile, high-energy protons (300 ~ 1000 MeV) aroused significant inelastic collisions in SiGe alloys, leading to a sequence of other PKA types, and the related damage energy distribution was predominantly located at the front of the proton range. In addition, the damage energy in SiGe/Si heterostructures generally decreased as the proton energy increased, and reverse-incident protons (10 MeV and 100 MeV) caused greater damage energy on the side of Si substrate at the interface than forward-incident protons, resulting in more noticeable fluctuations in damage energy on both sides of the interface than forward-incident protons, which could lead to severe displacement damage. Besides, Ge content could affect the PKA species, damage energy distribution, and nonionizing energy loss. As for high-energy protons, a high Ge content may lead to a great nonionizing energy loss, whereas the Ge content had an insignificant effect on the total damage energy of small-size SiGe/Si heterostructures. In summary, this work indicates that the proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures is closely dependent on the proton energy, and low-energy protons were prone to generate massive self-recoil atoms and induce significant displacement damage in small-size SiGe/Si heterostructures, which will provide conducive insights into research on the displacement damage effect and radiation hardening techniques of SiGe-based electronics.
  • [1]

    Li L, Bi R, Dong Z Y, Ye C Q, Xie J, Wang C L, Li X M, Pey K L, Li M, Wu X 2024Electron 2 e32

    [2]

    Böck J, Aufinger K, Boguth S, Dahl C, Knapp H, Liebl W, Manger D, Meister T F, Pribil A, Wursthorn J, Lachner R, Heinemann B, Rücker H, Fox A, Barth R, Fischer G, Marschmeyer S, Schmidt D, Trusch A, Wipf C 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM, 26-28 Oct. 2015 p121-124

    [3]

    Li P, Dong Z Y, Guo H X, Zhang F Q, Guo Y X, Peng Z G, He C H 2024Acta Phys. Sin. 73 044301(in Chinese) [李培,董志勇,郭红霞,张凤祁,郭亚鑫,彭治钢,贺朝会2024 73 044301]

    [4]

    Ma Y, Zhang P J, Xu X L, Chen X, Yi X H 2023Microelectron. 53 272(in Chinese) [马羽,张培健,徐学良,陈仙,易孝辉2023微电子学53 272]

    [5]

    Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W 2021J. Environ. Sci. Health, Part C 39 113

    [6]

    Cressler J D 2013IEEE Trans. Nucl. Sci. 60 1992

    [7]

    He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024Acta Phys. Sin. 73 052402(in Chinese) [何欢,白雨蓉,田赏,刘方,臧航,柳文波,李培,贺朝会2024 73 052402]

    [8]

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021Acta Phys. Sin. 70 172401(in Chinese) [白雨蓉,李永宏,刘方,廖文龙,何欢,杨卫涛,贺朝会2021 70 172401]

    [9]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003IEEE Trans. Nucl. Sci. 50 1924

    [10]

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014Acta Phys. Sin. 63 066102(in Chinese) [朱金辉,韦源,谢红刚,牛胜利,黄流兴2014 63 066102]

    [11]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013Nucl. Instrum. Methods Phys. Res., Sect. B 312 77

    [12]

    Li Y H, Kou B C, Zhao Y L, He C H, Yu Q K 2018At. Energ. Sci. Technol. 52 1735(in Chinese) [李永宏,寇勃晨,赵耀林,贺朝会,于庆奎2018原子能科学技术52 1735]

    [13]

    Fan J Q, Tan Q, Hao J H 2022AIP Adv. 12 095304

    [14]

    Bai Y R, Li P, He H, Liu F, Li W, He C H 2024Acta Phys. Sin. 73 052401(in Chinese) [白雨蓉,李培,何欢,刘方,李薇,贺朝会2024 73 052401]

    [15]

    Shen S S, He C H, Li Y H 2018Acta Phys. Sin. 67 182401(in Chinese) [申帅帅,贺朝会,李永宏2018 67 182401]

    [16]

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022J. Terahertz Sci. Electron. Inf. Technol. 20 523(in Chinese) [李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒2022太赫兹科学与电子信息学报20 523]

    [17]

    Zhang J X, Guo H X, Lyu L, Wang X, Pan X Y 2022J. Terahertz Sci. Electron. Inf. Technol. 20 869(in Chinese) [张晋新,郭红霞,吕玲,王信,潘霄宇2022太赫兹科学与电子信息学报20 869]

    [18]

    Pan X Y, Guo H X, Feng Y H, Liu Y N, Zhang J X, Li Z, Luo Y H, Zhang F Q, Wang T, Zhao W, Ding L L, Xu J Y 2022Sci. China: Technol. Sci. 65 1193

    [19]

    Sotskov D I, Elesin V V, Kuznetsov A G, Zhidkov N M, Metelkin I O, Amburkin K M, Amburkin D M, Usachev N A, Boychenko D V, Elesina V V 2020IEEE Trans. Nucl. Sci. 67 2396

    [20]

    Sotskov D I, Kuznetsov A G, Elesin V V, Selishchev I A, Kotov V N, Nikiforov A Y 202121th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 13-17 Sept. 2021 p1-4

    [21]

    Li P, He C H, Guo H X, Li Y H, Wei J N 2022IEEE Trans. Nucl. Sci. 69 1051

    [22]

    Haugerud B M, Pratapgarhwala M M, Comeau J P, Sutton A K, Prakash A P G, Cressler J D, Marshall P W, Marshall C J, Ladbury R L, El-Diwany M, Mitchell C, Rockett L, Bach T, Lawrence R, Haddad N 2006Solid-State Electron. 50 181

    [23]

    Diez S, Lozano M, Pellegrini G, Campabadal F, Diez I, Knoll D, Heinemann B, Ullan M 2009IEEE Trans. Nucl. Sci. 56 1931

    [24]

    Li Z Q, Liu S H, Adekoya M A, Ren X T, Zhang J, Liu S Y, Li L 2021Microelectron. Reliab. 127 114396

    [25]

    Jarrin T, Jay A, Raine M, Mousseau N, Hémeryck A, Richard N 2020IEEE Trans. Nucl. Sci. 67 1273

    [26]

    Xing T, Liu S H, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Chen W, Li K, Zheng X H 2023Radiat. Eff. Defects Solids 178 1384

    [27]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016Nucl. Instrum. Methods Phys. Res., Sect. A 835 186

    [28]

    Douglas J P 2004Semicond. Sci. Technol. 19 R75

    [29]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017IEEE Trans. Nucl. Sci. 64 133

    [30]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997IEEE Trans. Nucl. Sci. 44 2150

    [31]

    Mesick K E, Bartlett K D, Coupland D D S, Stonehill L C 2019Nucl. Instrum. Methods Phys. Res., Sect. A 948 162774

    [32]

    Ye E L, Lai Y F, Shen C X, Hou Y J, Nan H J 2025Radiat. Phys. Chem. 228 112417

    [33]

    Robinson M T, Torrens I M 1974Phys. Rev. B 9 5008

    [34]

    Akkerman A, Barak J 2006IEEE Trans. Nucl. Sci. 53 3667

    [35]

    Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H, Chen W 2023Nucl. Instrum. Methods Phys. Res., Sect. B 545 165144

    [36]

    Ziegler J F, Ziegler M D, Biersack J P 2010Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818

  • [1] LIAO Liangxin, ZHANG Jieyin, LIU Fangze, YAN Mouhui, MING Ming, FU Binxiao, ZHANG Xinding, ZHANG Jianjun. High-quality Si/SiGe heterojunctions on transferred SiGe nanomembranes. Acta Physica Sinica, doi: 10.7498/aps.74.20250164
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, doi: 10.7498/aps.73.20231499
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, doi: 10.7498/aps.73.20241246
    [4] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231671
    [5] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.71.20212041
    [6] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, doi: 10.7498/aps.71.20211722
    [7] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, doi: 10.7498/aps.70.20210303
    [8] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, doi: 10.7498/aps.69.20200714
    [9] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, doi: 10.7498/aps.67.20171701
    [10] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, doi: 10.7498/aps.67.20181095
    [11] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, doi: 10.7498/aps.65.014214
    [12] Feng Song, Xue Bin, Li Lian-Bi, Zhai Xue-Jun, Song Li-Xun, Zhu Chang-Jun. Analysis of Si/SiGe/Si double heterojunction band of a novelstructure of PIN electronic modulation. Acta Physica Sinica, doi: 10.7498/aps.65.054201
    [13] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, doi: 10.7498/aps.65.084209
    [14] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, doi: 10.7498/aps.64.024220
    [15] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, doi: 10.7498/aps.63.066102
    [16] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, doi: 10.7498/aps.62.117103
    [17] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.59.4136
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, doi: 10.7498/aps.55.1997
    [19] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, doi: 10.7498/aps.55.3546
    [20] Wang Qing-Xue. Study on models of strain and stress distribution in heterostructures. Acta Physica Sinica, doi: 10.7498/aps.54.3757
Metrics
  • Abstract views:  13
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  01 July 2025

/

返回文章
返回
Baidu
map