搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于转移SiGe薄膜上的高质量Si/SiGe异质结

廖良欣 张结印 刘方泽 颜谋回 明铭 符彬啸 张新定 张建军

引用本文:
Citation:

基于转移SiGe薄膜上的高质量Si/SiGe异质结

廖良欣, 张结印, 刘方泽, 颜谋回, 明铭, 符彬啸, 张新定, 张建军

High-quality Si/SiGe heterojunctions on transferred SiGe nanomembranes

LIAO Liangxin, ZHANG Jieyin, LIU Fangze, YAN Mouhui, MING Ming, FU Binxiao, ZHANG Xinding, ZHANG Jianjun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高质量的Si/SiGe异质结薄膜材料在集成电路和半导体量子计算等领域都有重要的应用. 本研究工作首先通过分子束外延(MBE)在SOI衬底上获得上下Si层厚度一致的Si/SiGe/Si异质结; 随后利用湿法刻蚀剥离该异质结, 并接着刻蚀上下Si层, 得到应力弛豫的SiGe薄膜; 最后, 将其转移到Si(001)衬底上并再次使用MBE在该转移SiGe薄膜上外延制备SiGe/Si/SiGe异质结. 原子力显微镜表征显示异质结表面均方根粗糙度仅为0.118 nm, 透射电子显微镜和电子通道衬度成像均未观察到任何位错. 研究显示基于转移SiGe薄膜上的Si/SiGe异质结完全消除了晶格失配引起的位错缺陷, 为高性能的量子比特器件奠定了重要的材料基础.
    Strained silicon technology employing strain-relaxed SiGe virtual substrates has become pivotal factor in advancing Group Ⅳ semiconductor electronics, photonic devices, silicon-based quantum computing architectures, and neuromorphic devices. Although existing approaches using Si/SiGe superlattice buffers and compositionally graded SiGe layers can produce high-quality SiGe virtual substrates, defects including threading dislocations and crosshatch patterns still limit further performance enhancement. This study demonstrates a method of fabricating fully elastically relaxed SiGe nanomembranes that effectively suppresses the formation of both threading dislocations and crosshatch patterns. The fabrication process comprises three key steps: 1) epitaxially growing Si/SiGe/Si heterostructures on silicon-on-insulator substrates via molecular beam epitaxy (MBE), 2) fabricating periodic pore arrays by using photolithography and reactive ion etching, and 3) selectively wet etching and subsequently transferring nanomembranes to Si(001) substrates. Subsequently, a Si/SiGe heterostructure is grown on the SiGe nanomembranes via MBE. The full elastic relaxation state of the SiGe nanomembranes and the fully strained state of the Si quantum well in the epitaxial Si/SiGe heterostructures are verified using Raman spectroscopy. Surface root-mean-square roughness value is 0.323 nm for the SiGe nanomembrane transferred to the silicon substrate and 0.118 nm for the epitaxial Si/SiGe heterostructure, which are demonstrated through atomic force microscopy measurements. Through electron channel contrast imaging, it is demonstrated that the Si/SiGe heterostructures grown on SiGe nanomembranes have uniform surface contrast and no detectable threading dislocations. Comparatively, the silicon substrate region exhibits high- density threading dislocations accompanied by stacking faults. Cross-sectional transmission electron microscope analysis shows atomically sharp and defect-free interfaces. This research lays a critical foundation for developing high-mobility two-dimensional electron gas systems and high-performance quantum bits.
  • 图 1  SiGe纳米薄膜的制备流程 (a) SOI衬底上外延生长60 nm Si, 80 nm Si0.78Ge0.22和280 nm Si; (b) 利用微纳加工技术制备周期孔洞阵列; (c) 在IPA溶液中将Si/SiGe/Si异质结和衬底进行分离; (d) 在TMAH溶液中选择性刻蚀掉上下Si层后的SiGe薄膜; (e) 在去离子水中将SiGe纳米薄膜转移到Si(001)衬底上

    Fig. 1.  Fabrication processes of SiGe nanomembrane: (a) MBE epitaxial growth of 60 nm Si, 80 nm Si0.78Ge0.22, and 280 nm Si on an SOI substrate; (b) fabrication of a periodic hole array on such heterostructure; (c) separation of the Si/SiGe/Si heterostructure from the Si substrate in IPA solution; (d) selective etching of the Si layers over SiGe in TMAH solution; (e) transfer of the SiGe nanomembrane onto a Si (001) substrate in deionized water.

    图 2  (a) Si0.78Ge0.22纳米薄膜在释放前(黑线)和释放后(红线)的拉曼光谱, 其中插图是Si0.78Ge0.22纳米膜转移到Si衬底后的光学显微镜图; (b) 在Si0.78Ge0.22纳米薄膜区域(黑线)和Si衬底区域(红线)生长Si/SiGe异质结后的拉曼光谱

    Fig. 2.  (a) Raman spectra of Si0.78Ge0.22 nanomembrane before release (black line) and after release (red line), where the inset shows an optical microscope image of the Si0.78Ge0.22 nanomembrane transferred to a Si substrate; (b) Raman spectra after growing Si/SiGe heterostructure in the Si0.78Ge0.22 nanomembrane region (black line) and Si substrate region (red line).

    图 3  (a) SOI衬底上生长Si/SiGe/Si异质结后的表面AFM图; (b) Si0.78Ge0.22纳米薄膜转移到Si衬底后的表面AFM; (c) 转移Si0.78Ge0.22纳米薄膜区域上生长Si/SiGe异质结后的表面AFM图; (d) 在Si衬底区域直接生长Si/SiGe异质结后的表面AFM图; (e) 在Si0.78Ge0.22纳米薄膜区域生长Si/SiGe异质结后的表面ECCI图; (f)在Si衬底区域直接生长Si/SiGe异质结后的表面ECCI图

    Fig. 3.  (a) AFM image of the surface after growing Si/SiGe/Si structure on an SOI substrate; (b) AFM image of the surface after transferring Si0.78Ge0.22 nanomembrane to a Si substrate; (c) AFM image of the surface after growing Si/SiGe heterostructure on the transferred Si0.78Ge0.22 nanomembrane region; (d) AFM image of the surface after directly growing Si/SiGe heterostructure on the Si region; (e) electron channel contrast imaging (ECCI) of the surface after growing Si/SiGe heterostructure on the Si0.78Ge0.22 nanomembrane region; (f) ECCI of the surface after directly growing Si/SiGe heterostructure on the Si substrate region.

    图 4  (a) Si(001)衬底上转移Si0.78Ge0.22纳米薄膜上生长Si/SiGe异质结后的截面STEM-HAADF原子图像; (b) 转移Si0.78Ge0.22纳米薄膜与外延Si0.78Ge0.22薄膜的截面STEM-HAADF原子图像; (c) Si衬底与Si0.78Ge0.22纳米薄膜界面的高倍STEM-HAADF原子图像; (d) Si量子阱附近的Si元素EDS谱; (e) Si量子阱附近的Ge元素EDS谱; (f) Si量子阱附近的高倍STEM-HAADF原子图像; (g) Si量子阱与Si0.78Ge0.22界面处的STEM-HAADF原子图像

    Fig. 4.  (a) STEM-HAADF image after growing Si/SiGe heterostructure on transferred Si0.78Ge0.22 nanomembrane on Si (001); (b) STEM-HAADF image showing the interface between the transferred and epitaxial Si0.78Ge0.22; (c) high-magnified STEM-HAADF image showing the interface between the Si substrate and transferred Si0.78Ge0.22 nanomembrane; (d) EDS spectrum of Si element near the Si quantum well; (e) EDS spectrum of Ge element near the Si quantum well; (f) high-magnified STEM-HAADF image near the Si quantum well; (g) STEM-HAADF atomic image showing the interface between the Si quantum well and the Si0.78Ge0.22 spacer layer.

    Baidu
  • [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng. 19 41Google Scholar

    [2]

    Shalf J 2020 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 378 20190061

    [3]

    Thompson S E, Parthasarathy S 2006 Mater. Today 9 20

    [4]

    Arienzo M, Iyer S S, Meyerson B S, Patton G L, Stork J M C 1991 Appl. Surf. Sci. 48 377

    [5]

    Azevedo A M D, Lopes T J, Cardoso D D, Monterio S N, Silveira P C R, Figueiredo A B H D S 2024 Obs. Econ. Latinoam. 22 e8370

    [6]

    Cressler J D 1998 IEEE Trans. Microw. Theory Tech. 46 572Google Scholar

    [7]

    Harame D L, Koester S J, Freeman G, Cottrel P, Rim K, Dehlinger G, Ahlgren D, Dunn J S, Greenberg D, Joseph A, Anderson F, Rieh J S, Onge S A S T, Coolbaugh D, Ramachandran V, Cressler J D, Subbanna S 2004 Appl. Surf. Sci. 224 9Google Scholar

    [8]

    Soref R A 1993 Proc. IEEE 81 1687Google Scholar

    [9]

    Wang K L, Cha D, Liu J, Chen C 2007 Proc. IEEE 95 1866Google Scholar

    [10]

    张结印, 高飞, 张建军 2021 70 217802Google Scholar

    Zhang J Y, Gao F, Zhang J J 2021 Acta Phys. Sin. 70 217802Google Scholar

    [11]

    Tai C T, Li J Y 2024 Mater. Quantum Technol. 4 012001Google Scholar

    [12]

    Connors E J, Nelson J, Edge L F, Nichol J M 2022 Nat. Commun. 13 940Google Scholar

    [13]

    Bian H, Goh Y Y, Liu Y, Ling H, Xie L, Liu X 2021 Adv. Mater. 33 2006469Google Scholar

    [14]

    Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R, Michel J, Mii Y J, Weir B E 1991 Appl. Phys. Lett. 59 811Google Scholar

    [15]

    Hartmann J M, Gallas B, Zhang J, Harris J J, Joyce B A 1999 J. Appl. Phys. 86 845Google Scholar

    [16]

    Rahman M M, Matada H, Tambo T, Tatsuyama C 2001 Appl. Surf. Sci. 175 6

    [17]

    Nelson S F, Ismail K, Nocera J J, Fang F F, Mendez E E, Chu J O, Meyerson B S 1992 Appl. Phys. Lett. 61 64Google Scholar

    [18]

    耿鑫, 张结印, 卢文龙, 明铭, 刘方泽, 符彬啸, 褚逸昕, 颜谋回, 王保传, 张新定, 郭国平, 张建军 2024 73 117302Google Scholar

    Geng X, Zhang J Y, Lu W L, Ming M, Liu F Z, Fu B X, Chu Y X, Yan M H, Wang B C, Zhang X D, Guo G P, Zhang J J 2024 Acta Phys. Sin. 73 117302Google Scholar

    [19]

    Xie Y H, Fitzgerald E A, Mii Y J, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 MRS Proc. 220 413Google Scholar

    [20]

    Ismail K 1996 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 2776

    [21]

    Monroe D, Xie Y H, Fitzgerald E A, Silverman P J, Watson G P 1993 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 11 1731

    [22]

    Paskiewicz D M, Tanto B, Savage D E, Lagally M G 2011 ACS Nano 5 5814Google Scholar

    [23]

    Li Y S, Sookchoo P, Cui X, Mohr R, Savage D E, Foote R H, Jacobson R, Sánchez-Pérez J R, Paskiewicz D M, Wu X, Ward D R, Coppersmith S N, Eriksson M A, Lagally M G 2015 ACS Nano 9 4891Google Scholar

    [24]

    Schäffler F 1997 Semicond. Sci. Technol. 12 1515Google Scholar

    [25]

    Schmidt O G, Eberl K 2001 Nature 410 168Google Scholar

    [26]

    Wolf I D 1996 Semicond. Sci. Technol. 11 139Google Scholar

    [27]

    Pezzoli F, Bonera E, Grilli E, Guzzi M, Sanguinetti S, Chrastina D, Isella G, Von Känel H, Wintersberger E, Stangl J, Bauer G 2008 J. Appl. Phys. 103 093521Google Scholar

    [28]

    Nakashima S, Mitani T, Ninomiya M, Matsumoto K 2006 J. Appl. Phys. 99 053512Google Scholar

    [29]

    Wong L H, Wong C C, Liu J P, Sohn D K, Chan L, Hsia L C, Zang H, Ni Z H, Shen Z X 2005 Jpn. J. Appl. Phys. 44 7922Google Scholar

    [30]

    Loup V, Gabette L, Roure M C, Kachtouli R, Jourdan M, Besson P, Petitdidier S 2013 ECS Trans. 58 47

    [31]

    Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuators Phys. 80 179Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , doi: 10.7498/aps.73.20231645
    [2] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , doi: 10.7498/aps.73.20231417
    [3] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究.  , doi: 10.7498/aps.72.20221383
    [4] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控.  , doi: 10.7498/aps.71.20220727
    [5] 李更, 郭辉, 高鸿钧. 超高真空构筑新型二维材料及其异质结构.  , doi: 10.7498/aps.71.20212407
    [6] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控.  , doi: 10.7498/aps.71.20220815
    [7] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展.  , doi: 10.7498/aps.70.20211492
    [8] 高飞, 冯琦, 王霆, 张建军. 硅(001)图形衬底上锗硅纳米线的定位生长.  , doi: 10.7498/aps.69.20191407
    [9] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器.  , doi: 10.7498/aps.67.20171815
    [10] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长.  , doi: 10.7498/aps.65.127401
    [11] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究.  , doi: 10.7498/aps.64.177802
    [12] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , doi: 10.7498/aps.64.077501
    [13] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长.  , doi: 10.7498/aps.63.027401
    [14] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究.  , doi: 10.7498/aps.62.197301
    [15] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜.  , doi: 10.7498/aps.61.157803
    [16] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究.  , doi: 10.7498/aps.61.247304
    [17] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜.  , doi: 10.7498/aps.60.028101
    [18] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜.  , doi: 10.7498/aps.59.8026
    [19] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响.  , doi: 10.7498/aps.56.3393
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置.  , doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  250
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-10
  • 修回日期:  2025-03-21
  • 上网日期:  2025-04-19

/

返回文章
返回
Baidu
map