搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于转移SiGe薄膜上的高质量Si/SiGe异质结

廖良欣 张结印 刘方泽 颜谋回 明铭 符彬啸 张新定 张建军

引用本文:
Citation:

基于转移SiGe薄膜上的高质量Si/SiGe异质结

廖良欣, 张结印, 刘方泽, 颜谋回, 明铭, 符彬啸, 张新定, 张建军

High-quality Si/SiGe heterojunctions on transferred SiGe nanomembranes

LIAO Liangxin, ZHANG Jieyin, LIU Fangze, YAN Mouhui, MING Ming, FU Binxiao, ZHANG Xinding, ZHANG Jianjun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高质量的Si/SiGe异质结薄膜材料在集成电路和半导体量子计算等领域都有重要的应用。本研究工作首先通过分子束外延(MBE)在SOI衬底上获得上下Si层厚度一致的Si/SiGe/Si异质结;随后利用湿法刻蚀剥离该异质结,并接着刻蚀上下Si层,得到应力弛豫的SiGe薄膜;最后,将其转移到Si (001)衬底上并再次使用MBE在该转移SiGe薄膜上外延制备SiGe/Si/SiGe异质结。原子力显微镜表征显示异质结表面均方根粗糙度仅为0.118 nm,透射电镜和电子通道衬度成像均未观察到任何位错。研究显示基于转移SiGe薄膜上的Si/SiGe异质结完全消除了晶格失配引起的位错缺陷,为高性能的量子比特器件奠定了重要的材料基础。
    Strained silicon technology employing strain-relaxed SiGe virtual substrates has become pivotal for advancing Group IV semiconductor electronics, photonic devices, silicon-based quantum computing architectures, and neuromorphic devices. While existing approaches using Si/SiGe superlattice buffers and compositionally graded SiGe layers enable the fabrication of high-quality SiGe virtual substrates, defects including threading dislocations and crosshatch patterns still limit further performance enhancement. This study demonstrates a fabrication method for fully elastically relaxed SiGe nanomembranes that effectively suppresses the formation of both threading dislocations and crosshatch patterns. The fabrication process comprises three key steps: (1) epitaxial of Si/SiGe/Si heterostructures on silicon-on-insulator (SOI) substrates via molecular beam epitaxy (MBE); (2) fabrication of periodic pore arrays using photolithography and reactive ion etching (RIE); (3) selective wet etching and subsequent transfer of nanomembranes to Si (001) substrates. Subsequently, a Si/SiGe heterostructure was grown on the SiGe nanomembranes via MBE. The full elastic relaxation state of the SiGe nanomembranes and the fully strained state of the Si quantum well in the epitaxial Si/SiGe heterostructures were verified using Raman spectroscopy. Surface root-mean-square roughness values of 0.323 nm for the SiGe nanomembrane transferred to the silicon substrate and 0.118 nm for the epitaxial Si/SiGe heterostructure were demonstrated through atomic force microscopy (AFM) measurements. Uniform surface contrast in the Si/SiGe heterostructure grown on SiGe nanomembranes was demonstrated through electron channel contrast imaging (ECCI), with no detectable threading dislocations. Comparatively, the silicon substrate region exhibits a high density of threading dislocations accompanied by stacking faults. Crosssectional transmission electron microscope (TEM) analysis shows atomically sharp and defect-free interfaces. This research establishes a critical foundation for developing high-mobility two-dimensional electron gas systems and high-performance quantum bits.
  • [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng. 19 41

    [2]

    Shalf J 2020 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 378 20190061

    [3]

    Thompson S E, Parthasarathy S 2006 Mater. Today 9 20

    [4]

    Arienzo M, Iyer S S, Meyerson B S, Patton G L, Stork J M C 1991 Appl. Surf. Sci. 48 377

    [5]

    Azevedo A M D, Lopes T J, Cardoso D D, Monterio S N, Silveira P C R, Figueiredo A B H D S 2024 Obs. Econ. Latinoam. 22 e8370

    [6]

    Cressler J D 1998 IEEE Trans. Microw. Theory Tech. 46 572

    [7]

    Harame D L, Koester S J, Freeman G, Cottrel P, Rim K, Dehlinger G, Ahlgren D, Dunn J S, Greenberg D, Joseph A, Anderson F, Rieh J S, Onge S A S T, Coolbaugh D, Ramachandran V, Cressler J D, Subbanna S 2004 Appl. Surf. Sci. 224 9

    [8]

    Soref R A 1993 Proc. IEEE 81 1687

    [9]

    Wang K L, Cha D, Liu J, Chen C 2007 Proc. IEEE 95 1866

    [10]

    Zhang J Y, Gao F, Zhang J J 2021 Acta Phys. Sin. 70 217802

    [11]

    Tai C T, Li J Y 2024 Mater. Quantum Technol. 4 012001

    [12]

    Connors E J, Nelson J, Edge L F, Nichol J M 2022 Nat. Commun. 13 940

    [13]

    Bian H, Goh Y Y, Liu Y, Ling H, Xie L, Liu X 2021 Adv. Mater. 33 2006469

    [14]

    Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R, Michel J, Mii Y J, Weir B E 1991 Appl. Phys. Lett. 59 811

    [15]

    Hartmann J M, Gallas B, Zhang J, Harris J J, Joyce B A 1999 J. Appl. Phys. 86 845

    [16]

    Rahman M M, Matada H, Tambo T, Tatsuyama C 2001 Appl. Surf. Sci. 175 6

    [17]

    Nelson S F, Ismail K, Nocera J J, Fang F F, Mendez E E, Chu J O, Meyerson B S 1992 Appl. Phys. Lett. 61 64

    [18]

    Geng X, Zhang J Y, Lu W L, Ming M, Liu F Z, Fu B X, Chu Y X, Yan M H, Wang B C, Zhang X D, Guo G P, Zhang J J 2024 Acta Phys. Sin. 73 117302

    [19]

    Xie Y H, Fitzgerald E A, Mii Y J, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 MRS Proc. 220 413

    [20]

    Ismail K 1996 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 2776

    [21]

    Monroe D, Xie Y H, Fitzgerald E A, Silverman P J, Watson G P 1993 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 11 1731

    [22]

    Paskiewicz D M, Tanto B, Savage D E, Lagally M G 2011 ACS Nano 5 5814

    [23]

    Li Y S, Sookchoo P, Cui X, Mohr R, Savage D E, Foote R H, Jacobson R, Sánchez-Pérez J R, Paskiewicz D M, Wu X, Ward D R, Coppersmith S N, Eriksson M A, Lagally M G 2015 ACS Nano 9 4891

    [24]

    Schäffler F 1997 Semicond. Sci. Technol. 12 1515

    [25]

    Schmidt O G, Eberl K 2001 Nature 410 168

    [26]

    Wolf I D 1996 Semicond. Sci. Technol. 11 139

    [27]

    Pezzoli F, Bonera E, Grilli E, Guzzi M, Sanguinetti S, Chrastina D, Isella G, Von Känel H, Wintersberger E, Stangl J, Bauer G 2008 J. Appl. Phys. 103 093521

    [28]

    Nakashima S, Mitani T, Ninomiya M, Matsumoto K 2006 J. Appl. Phys. 99 053512

    [29]

    Wong L H, Wong C C, Liu J P, Sohn D K, Chan L, Hsia L C, Zang H, Ni Z H, Shen Z X 2005 Jpn. J. Appl. Phys. 44 7922

    [30]

    Loup V, Gabette L, Roure M C, Kachtouli R, Jourdan M, Besson P, Petitdidier S 2013 ECS Trans. 58 47

    [31]

    Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuators Phys. 80 179

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , doi: 10.7498/aps.73.20231645
    [2] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , doi: 10.7498/aps.73.20231417
    [3] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究.  , doi: 10.7498/aps.72.20221383
    [4] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控.  , doi: 10.7498/aps.71.20220727
    [5] 李更, 郭辉, 高鸿钧. 超高真空构筑新型二维材料及其异质结构.  , doi: 10.7498/aps.71.20212407
    [6] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控.  , doi: 10.7498/aps.71.20220815
    [7] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展.  , doi: 10.7498/aps.70.20211492
    [8] 高飞, 冯琦, 王霆, 张建军. 硅(001)图形衬底上锗硅纳米线的定位生长.  , doi: 10.7498/aps.69.20191407
    [9] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器.  , doi: 10.7498/aps.67.20171815
    [10] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长.  , doi: 10.7498/aps.65.127401
    [11] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究.  , doi: 10.7498/aps.64.177802
    [12] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , doi: 10.7498/aps.64.077501
    [13] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长.  , doi: 10.7498/aps.63.027401
    [14] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究.  , doi: 10.7498/aps.62.197301
    [15] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜.  , doi: 10.7498/aps.61.157803
    [16] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究.  , doi: 10.7498/aps.61.247304
    [17] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜.  , doi: 10.7498/aps.60.028101
    [18] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜.  , doi: 10.7498/aps.59.8026
    [19] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响.  , doi: 10.7498/aps.56.3393
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置.  , doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  84
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-19

/

返回文章
返回
Baidu
map