-
非电离能损(NIEL)引起的位移损伤是导致空间辐射环境中新型光电器件失效的主要因素. 引起质子在硅中NIEL的作用机理有库仑相互作用和核相互作用,质子能量范围从位移损伤阈能到1 GeV. 当质子能量位于低能区时,库仑相互作用占主导地位,采用解析方法和TRIM程序计算NIEL;当质子能量位于高能区时,NIEL主要来自质子与靶原子核的弹性和非弹性相互作用,使用MCNPX/HTAPE3X 进行模拟仿真计算由核反应引起的NIEL. 实现了能量范围为300 eV–1 GeV的质子入射硅时NIEL的计算. 计算结果表明,MCNPX/HTAPE3X可用于计算高能质子在材料中产生的反冲核所引起的NIEL,结合解析方法和TRIM程序可计算得到由于库仑相互作用引起的NIEL.The displacement damage due to non-ionizing energy loss (NIEL) is the main reason of photo-electronic device failure in space radiation environment. The basic mechanisms of NIEL are Coulomb and nuclear interactions of silicon atoms with incident protons at energies ranging from threshold to 1 GeV. In the low energy region where the Coulomb interaction is dominant, the NIEL can be calculated by analytical method and TRIM code. MCNPX/HTAPE3X is used to calculate NIEL when the nuclear elastic and non-elastic interactions between proton and target atoms are significant in the high energy range. The results show that it is reasonable to use MCNPX/HTAPE3X to evaluate the NIEL by recoiling nucleus caused by high energy protons. The combination of analytical method and TRIM code can calculate NIEL induced by Coulomb interaction in low energy range, which gives the NIEL of proton in silicon in an energy range from 300 eV to 1 GeV.
-
Keywords:
- proton /
- non-ionization energy loss /
- Coulomb interaction /
- nuclear interaction
[1] Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301
[2] Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372
[3] Jun I 2001 IEEE Trans. Nucl. Sci. 48 162
[4] Luo W Y, Wang C Z, He X F, Fan S, Huang X L, Wang C S 2006 High Energy Phys. Nucl. Phys. 30 1088 (in Chinese) [罗文芸, 王朝壮, 贺新福, 樊胜, 黄小龙, 王传珊 2006 高能物理与核物理 30 1088]
[5] Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 57 1266]
[6] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summer G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924
[7] Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919
[8] Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595
[9] Jun I, Xapos M A, Burke E A 2004 IEEE Trans. Nucl. Sci. 51 3207
[10] Fudan Univ., Tsinghua Univ., Peking Univ. 1997 Experimental Method of Nuclear Physics (Beijing: Atomic Energy Press) p47 (in Chinese) [复旦大学, 清华大学, 北京大学 1997 原子核物理实验方法 (北京: 原子能出版社) 第47页]
[11] Pelowitz D B 2008 MCNPX User’s Manual Version 2.6.0 (Los Alamos: Los Alamos National Laboratory)
-
[1] Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301
[2] Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372
[3] Jun I 2001 IEEE Trans. Nucl. Sci. 48 162
[4] Luo W Y, Wang C Z, He X F, Fan S, Huang X L, Wang C S 2006 High Energy Phys. Nucl. Phys. 30 1088 (in Chinese) [罗文芸, 王朝壮, 贺新福, 樊胜, 黄小龙, 王传珊 2006 高能物理与核物理 30 1088]
[5] Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 57 1266]
[6] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summer G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924
[7] Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919
[8] Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595
[9] Jun I, Xapos M A, Burke E A 2004 IEEE Trans. Nucl. Sci. 51 3207
[10] Fudan Univ., Tsinghua Univ., Peking Univ. 1997 Experimental Method of Nuclear Physics (Beijing: Atomic Energy Press) p47 (in Chinese) [复旦大学, 清华大学, 北京大学 1997 原子核物理实验方法 (北京: 原子能出版社) 第47页]
[11] Pelowitz D B 2008 MCNPX User’s Manual Version 2.6.0 (Los Alamos: Los Alamos National Laboratory)
计量
- 文章访问数: 7992
- PDF下载量: 665
- 被引次数: 0