-
Based on the idea of multiple photonic bandgap (PBG) overlapping for a one-dimensional photonic crystal heterostructure, a novel hybrid quasiperiodic heterostructure is proposed to enlarge the omnidirectional photonic bandgap (OPBG). The heterostructure is formed by combining Fibonacci and Thue-Morse quasiperiodic structure. The results show that the OPBG of the heterostructure is enlarged obviously, which increases about three times compared with that of Fibonacci quasiperiodic structure, and twelve times compared with that of Thue-Morse quasiperiodic structure. The influences of structural parameters, such as period number and generation number, on PBGs of Fibonacci and Thue-Morse quasiperiodic structure are studied respectively. The results show that the parameters have little effects on PBG widths of the two quasiperiodic structures. The influences of the refractive indexes and thickness values of the high and low refractive index materials on OPBG of the heterostructure are also investigated. The results show that the OPBG of the heterostructure can be further broadened by increasing the refractive index ratios and thickness values of the high and low refractive index materials. The reason why the quasiperiodic structure can easily realize the multiple band gap overlapping is analyzed by comparing the bandgap properties of periodic structure. The number of PBGs of the quasiperiodic structure in the same wavelength range is more than that of the periodic structure. Moreover, with the increase of generation number of the quasiperiodic structure, due to the occurrence of PBG split, the number of PBGs increases obviously, and each PBG width is less than that of the periodic structure. Owing to this kind of PBG characteristic of the quasiperiodic structure, the heterostructure formed by cascading the two quasiperiodic structures is more prone to realizing the multiple PBG overlapping than other heterostructures, thus more easily achieving the expansion of OPBG. These results lay the design foundation for the compensation and broadening of the more complex bandgap structure.
-
Keywords:
- photonic crystal /
- quasiperiodic /
- heterostructure /
- photonic bandgap
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104
[4] Zhang J, Yu S, Guo S, Li X 2011 Chin. J. Lasers 38 0105005 (in Chinese) [张娟, 于帅, 郭森, 李雪 2011 中国激光 38 0105005]
[5] Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 0104215
[6] Gao Y H, Xu X S 2014 Chin. Phys. B 23 0114205
[7] Ye H, Zhang J Q N, Yu Z Y, Wang D L, Chen Z H 2015 Chin. Phys. B 24 094214
[8] Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197
[9] Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415
[10] Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopulos J D, Fink Y 2002 Science 296 510
[11] Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A: Mater. Sci. Process. 68 25
[12] Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104
[13] Manzanares-Martinez J, Archuleta-Garcia R, Castro-Garay P, Moctezuma-Enriquez D, Urrutia-Banuelos E 2011 Prog. Electromagn. Res. 111 105
[14] Kumar V, Anis M, Singh K S, Singh G 2011 Optik 122 2186
[15] Suthar B, Bhargava A 2012 Opt. Commun. 285 1481
[16] Wang X, Hu X H, Li Y Z, Jia W L 2002 Appl. Phys. Lett. 80 4291
[17] Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804
[18] Steurer W, Sutter-Widmer D 2007 J. Phys. D: Appl. Phys. 40 R229
[19] Poddubny A N, Ivchenko E L 2010 Physica E 42 1871
[20] Singh B K, Thapa K B, Pandey P C 2013 Opt. Commun. 297 65
[21] Gazi N A, Bernhard G 2014 J. Appl. Phys. 116 094903
[22] Hsueh W J, Chen C T, Chen C H 2008 Phys. Rev. A 78 013836
[23] Grigoriev V V, Biancalana F 2010 Photon. Nanostruct.-Fundam. Appl. 8 285
[24] Mouldi A, Kanzari M 2013 Prog. Electromagn. Res. M 32 169
[25] Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)
-
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104
[4] Zhang J, Yu S, Guo S, Li X 2011 Chin. J. Lasers 38 0105005 (in Chinese) [张娟, 于帅, 郭森, 李雪 2011 中国激光 38 0105005]
[5] Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 0104215
[6] Gao Y H, Xu X S 2014 Chin. Phys. B 23 0114205
[7] Ye H, Zhang J Q N, Yu Z Y, Wang D L, Chen Z H 2015 Chin. Phys. B 24 094214
[8] Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197
[9] Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415
[10] Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopulos J D, Fink Y 2002 Science 296 510
[11] Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A: Mater. Sci. Process. 68 25
[12] Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104
[13] Manzanares-Martinez J, Archuleta-Garcia R, Castro-Garay P, Moctezuma-Enriquez D, Urrutia-Banuelos E 2011 Prog. Electromagn. Res. 111 105
[14] Kumar V, Anis M, Singh K S, Singh G 2011 Optik 122 2186
[15] Suthar B, Bhargava A 2012 Opt. Commun. 285 1481
[16] Wang X, Hu X H, Li Y Z, Jia W L 2002 Appl. Phys. Lett. 80 4291
[17] Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804
[18] Steurer W, Sutter-Widmer D 2007 J. Phys. D: Appl. Phys. 40 R229
[19] Poddubny A N, Ivchenko E L 2010 Physica E 42 1871
[20] Singh B K, Thapa K B, Pandey P C 2013 Opt. Commun. 297 65
[21] Gazi N A, Bernhard G 2014 J. Appl. Phys. 116 094903
[22] Hsueh W J, Chen C T, Chen C H 2008 Phys. Rev. A 78 013836
[23] Grigoriev V V, Biancalana F 2010 Photon. Nanostruct.-Fundam. Appl. 8 285
[24] Mouldi A, Kanzari M 2013 Prog. Electromagn. Res. M 32 169
[25] Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)
计量
- 文章访问数: 6036
- PDF下载量: 173
- 被引次数: 0