Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical design of tunable terahertz metasurfaces with dual-mode polarization conversion and ultra-broadband absorption functionality

WANG Dan LI Jiusheng XIONG Rihui

Citation:

Theoretical design of tunable terahertz metasurfaces with dual-mode polarization conversion and ultra-broadband absorption functionality

WANG Dan, LI Jiusheng, XIONG Rihui
cstr: 32037.14.aps.74.20241762
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, we propose a vanadium dioxide and germanium telluride composite metasurface. The conductivity of vanadium dioxide and germanium telluride is varied by changing the temperature, which enables the switching of functions such as ultra-broadband absorption, reflective-type polarization, and transmissive-type polarization. When vanadium dioxide is metallic and germanium telluride is crystalline, the terahertz wave is incident along the –z direction, and the metasurface can be used as a broadband absorber, with an absorption rate greater than 90% in a frequency range of 7.96–17.76 THz, and the absorption bandwidth reaches 9.8 THz, with a relative bandwidth of 76.2%. In addition, the designed metasurface absorber is polarization-insensitive and exhibits good absorption performance at large incidence angles. Terahertz waves are incident along the +z direction, and this metasurface can be used as a reflective polarization converter with a polarization conversion ratio greater than 0.9 for x– and y–polarized waves in the frequency band from 2.04 to 4.44 THz. The effects of incidence angle and structural parameters on polarization conversion performance are also investigated. When vanadium dioxide is in the dielectric state and germanium telluride is in the amorphous state, the metasurface can be used as a transmissive polarization converter, with a polarization conversion rate of greater than 0.9 in a frequency band of 0.65–5.07 THz. And the high polarization conversion performance can be maintained in a wide range of incidence angles. Finally, the physical mechanism of polarization conversion is analyzed using surface currents. The results show that the metasurface structure has bi-directional, switchable and multi-functional characteristics for terahertz wave manipulation, and has broad application prospects in terahertz wave sensing, imaging and communication.
      Corresponding author: LI Jiusheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62271460, 62435017) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ24F050005).
    [1]

    Zheng C L, Li J, Yue Z, Li J T, Liu J Y, Wang G C, Wang S L, Zhang Y T, Zhang Y, Yao J Q 2022 Laser Photonics Rev. 16 2200051Google Scholar

    [2]

    Huang X J, Cao M, Wang D Q, Li X W, Fan J D, Li X Y 2022 Opt. Mater. Express 12 811Google Scholar

    [3]

    Bader A D, Saghaei H 2023 Opt. Express 31 12653Google Scholar

    [4]

    Luo B, Qi Y P, Zhou Z H, Shi Q, Wang X X 2024 Nanotechnology 35 195205Google Scholar

    [5]

    King J, Wan C H, Park T J, Deshpande S, Zhang Z, Ramanathan S, Kats M A 2024 Nat. Photonics 18 74Google Scholar

    [6]

    Zeng Y, Wang J Q, Yang X S, Yao J Q, Li P N, He Q, Xu M, Miao X S 2023 Opt. Mater. 136 113447Google Scholar

    [7]

    Chen Z, Chen J J, Tang H W, Shen T, Zhang H 2022 Opt. Express 30 6778Google Scholar

    [8]

    Jiang X X, Xiao Z Y, Wang X W, Cheng P 2023 Appl. Opt. 62 3519Google Scholar

    [9]

    Phan H L, Nguyen T Q H, Nguyen T M, Nguyen N H, Le D T, Bui X K, Vu D L, Kim J M, 2024 Opt. Mater. 154 115682Google Scholar

    [10]

    Zhang Y, Xue W R, Du Y D, Liang J L, Li C Y 2024 Opt. Mater. 149 114984Google Scholar

    [11]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [12]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar

    [13]

    Nguyen H Q, Nguyen T Q H, Nguyen T M 2024 Phys. Scr. 99 115534Google Scholar

    [14]

    Zhang P Y, Chen G Q, Hou Z Y, Zhang Y Z, Shen J, Li C Y, Zhao M L, Gao Z Z, Li Z Q, Tang T T 2022 Micromachines 13 669Google Scholar

    [15]

    Zhang R Y, Luo Y A, Xu J K, Wang H Y, Han H Y, Hu D, Zhu Q F, Zhang Y 2021 Opt. Express 29 42989Google Scholar

    [16]

    Li N C, Mei J S, Gong D G, Shia Y C 2022 Opt. Commun. 521 128581Google Scholar

    [17]

    Jiang X Q, Fan W H, Qin C, Chen X 2021 Nanomaterials 11 2895Google Scholar

    [18]

    Li Z H, Yang R C, Wang J Y, Zhao Y J, Tian J P, Zhang W M 2021 Opt. Mater. Express 11 3507Google Scholar

    [19]

    Zhang H, He X C, Zhang D, Zhang H F 2022 Opt. Express 30 23341Google Scholar

    [20]

    Niu J H, Yao Q Y, Mo W, Li C H, Zhu A J 2023 Opt. Commun. 527 128953Google Scholar

  • 图 1  太赫兹超表面阵列示意和单元结构图 (a)超表面结构示意图; (b)单元结构; (c)顶层图案俯视图; (d)底层图案俯视图

    Figure 1.  Schematic of the array and cell structure of terahertz metasurface: (a) Schematic of the terahertz metasurface; (b) cell structure; (c) top view; (d) bottom view.

    图 2  太赫兹波沿–z 方向入射时超表面电磁响应曲线 (a)吸收、反射和透射曲线; (b)等效阻抗实部和虚部曲线

    Figure 2.  Electromagnetic response curves of the metasurface for terahertz waves incident along the –z direction: (a) Absorption, reflection, and transmission curves; (b) equivalent impedance real and imaginary curves.

    图 3  太赫兹波沿–z方向入射时不同组合图案对应的太赫兹波吸收曲线

    Figure 3.  Terahertz wave absorption curves corresponding to different combinations of patterns when terahertz waves are incident along the –z direction.

    图 4  太赫兹波沿–z方向入射吸收器谐振频点处的电磁场分布 (a)—(c) TE模式和(d)—(f) TM模式下, 谐振频点处的电场分布俯视图; (g)—(i) TE模式下, 谐振频点处的磁场分布侧视图

    Figure 4.  Electromagnetic field distribution at the resonant frequency points of the absorber for a terahertz wave incident along the –z direction. Top view of the electric field distribution at the resonant frequency point in (a)–(c) TE mode and (d)–(f) TM mode; (g)–(i) side view of the magnetic field distribution at the resonant frequency point in TE mode.

    图 5  太赫兹波沿–z方向入射时入射角与极化角对吸收性能的影响 (a) TE模式和(b) TM模式下, 不同入射角对吸收性能的影响; (c)不同极化角对吸收性能的影响

    Figure 5.  Effect of incidence angle and polarization angle on absorption performance for terahertz waves incident along –z direction: Effect of different incidence angles on the absorption performance in (a) TE mode and (b) TM mode; (c) effect of different polarization angles on the absorption performance.

    图 6  太赫兹波沿+z方向入射下超表面的电磁响应曲线 (a)反射系数; (b)极化转换率PCR

    Figure 6.  Electromagnetic response curves of the metasurface under the incidence of terahertz waves along the +z direction: (a) Reflection coefficient; (b) polarization conversion rate PCR.

    图 7  太赫兹波沿+z方向入射下, 不同极化角对PCR影响 (a) x偏振波入射下, 不同极化角对PCR影响; (b) y偏振波入射下, 不同极化角对PCR影响

    Figure 7.  Effect of different polarization angles on PCR under the incidence of terahertz waves along the +z direction: (a) Effect of different polarization angles on PCR under x–polarized wave incidence; (b) the effect of different polarization angles on PCR under y–polarized wave incidence.

    图 8  太赫兹波沿+z方向入射下, 不同入射角对PCR影响 (a) x偏振波入射下, 不同入射角对PCR影响; (b) y偏振波入射下, 不同入射角对PCR影响

    Figure 8.  Effect of different incidence angles on PCR under the incidence of terahertz waves along the +z direction: (a) Effect of different incidence angles on PCR under x–polarized wave incidence; (b) the effect of different incidence angles on PCR under y–polarized wave incidence.

    图 9  太赫兹波沿+z方向入射下, 不同结构参数对PCRx影响 (a)两边矩形谐振器宽度w3; (b)中间条形谐振器宽度w4; (c)外环半径R1; (d)内环半径R2

    Figure 9.  Effect of different structural parameters on PCRx under the incidence of terahertz wave along +z direction: (a) Width of the rectangular resonator on both sides w3; (b) width of the strip resonator in the middle w4; (c) outer ring radius R1; (d) inner ring radius R2.

    图 10  太赫兹波沿+z方向入射下超表面的太赫兹电磁响应曲线 (a)透射系数; (b)极化转换率PCR

    Figure 10.  Electromagnetic response curves of the metasurface under the incidence of terahertz waves along the +z direction: (a) Transmission coefficient; (b) polarization conversion rate PCR.

    图 11  太赫兹波沿+z方向入射下入射角变化对极化转换率PCR影响

    Figure 11.  Effect of variation of incidence angle on polarization conversion rate PCR under terahertz wave incidence along +z direction.

    图 12  不同谐振频率下, 太赫兹波沿+z方向入射下, 顶层、中间和底层结构在谐振频点处的电流分布图 (a), (d)顶层十字架结构; (b), (e)中间光栅层; (c), (f)底层“工”形结构

    Figure 12.  Current distributions of the top, intermediate and bottom layers of the structure at the resonance frequencies under terahertz wave incidence along the +z direction, current distributions at different resonant frequencies: (a), (d) The top cross structure; (b), (e) the intermediate grating layer; (c), (f) the bottom “工” structure.

    表 1  本文提出结构与其他文献报道成果对比

    Table 1.  Comparison of the proposed structure in this paper with previously reported works.

    文献 可调材料 功能 性能 带宽
    [18] Graphene 宽带吸收和极化转换 1.74—3.52 THz: A≥90%
    1.54—2.55 THz: PCRr≥90%
    吸收1.78 THz
    反射极化转换1.01 THz
    [19] VO2和Si 宽带吸收和极化转换 0.68—1.60 THz: A≥90%
    0.82—1.60 THz: PCRr≥90%
    吸收0.92 THz
    反射极化转换0.78 THz
    [20] VO2 宽带吸收和极化转换 3.33—5.62 THz: A≥90%
    2.54—4.55 THz: PCRr≥90%
    吸收2.29 THz
    反射极化转换2.01 THz
    [10] VO2 宽带吸收和极化转换 1.49—3.58 THz: A≥90%
    1.1—3.2 THz: PCRr≥90%
    吸收2.09 THz
    反射极化转换2.1 THz
    本文 VO2和GeTe 宽带吸收和极化转换 7.96—17.76 THz: A≥90%
    2.04—4.44 THz: PCRr≥90%
    0.65—5.07 THz: PCRt≥90%
    吸收9.8 THz
    反射极化转换2.4 THz
    透射极化转换4.42 THz
    DownLoad: CSV
    Baidu
  • [1]

    Zheng C L, Li J, Yue Z, Li J T, Liu J Y, Wang G C, Wang S L, Zhang Y T, Zhang Y, Yao J Q 2022 Laser Photonics Rev. 16 2200051Google Scholar

    [2]

    Huang X J, Cao M, Wang D Q, Li X W, Fan J D, Li X Y 2022 Opt. Mater. Express 12 811Google Scholar

    [3]

    Bader A D, Saghaei H 2023 Opt. Express 31 12653Google Scholar

    [4]

    Luo B, Qi Y P, Zhou Z H, Shi Q, Wang X X 2024 Nanotechnology 35 195205Google Scholar

    [5]

    King J, Wan C H, Park T J, Deshpande S, Zhang Z, Ramanathan S, Kats M A 2024 Nat. Photonics 18 74Google Scholar

    [6]

    Zeng Y, Wang J Q, Yang X S, Yao J Q, Li P N, He Q, Xu M, Miao X S 2023 Opt. Mater. 136 113447Google Scholar

    [7]

    Chen Z, Chen J J, Tang H W, Shen T, Zhang H 2022 Opt. Express 30 6778Google Scholar

    [8]

    Jiang X X, Xiao Z Y, Wang X W, Cheng P 2023 Appl. Opt. 62 3519Google Scholar

    [9]

    Phan H L, Nguyen T Q H, Nguyen T M, Nguyen N H, Le D T, Bui X K, Vu D L, Kim J M, 2024 Opt. Mater. 154 115682Google Scholar

    [10]

    Zhang Y, Xue W R, Du Y D, Liang J L, Li C Y 2024 Opt. Mater. 149 114984Google Scholar

    [11]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [12]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503Google Scholar

    [13]

    Nguyen H Q, Nguyen T Q H, Nguyen T M 2024 Phys. Scr. 99 115534Google Scholar

    [14]

    Zhang P Y, Chen G Q, Hou Z Y, Zhang Y Z, Shen J, Li C Y, Zhao M L, Gao Z Z, Li Z Q, Tang T T 2022 Micromachines 13 669Google Scholar

    [15]

    Zhang R Y, Luo Y A, Xu J K, Wang H Y, Han H Y, Hu D, Zhu Q F, Zhang Y 2021 Opt. Express 29 42989Google Scholar

    [16]

    Li N C, Mei J S, Gong D G, Shia Y C 2022 Opt. Commun. 521 128581Google Scholar

    [17]

    Jiang X Q, Fan W H, Qin C, Chen X 2021 Nanomaterials 11 2895Google Scholar

    [18]

    Li Z H, Yang R C, Wang J Y, Zhao Y J, Tian J P, Zhang W M 2021 Opt. Mater. Express 11 3507Google Scholar

    [19]

    Zhang H, He X C, Zhang D, Zhang H F 2022 Opt. Express 30 23341Google Scholar

    [20]

    Niu J H, Yao Q Y, Mo W, Li C H, Zhu A J 2023 Opt. Commun. 527 128953Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [4] Shi Peng-Fei, Ma Xin-Ying, Xiang Chuan, Zhao Hong-Ge, Li Yuan, Gao Ren-Jing, Liu Shu-Tian. Topology optimization design of dual-channel metasurface structure with controllable amplitude of retroreflection and mirror reflection. Acta Physica Sinica, 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [5] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [11] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao. Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna. Acta Physica Sinica, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [13] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [20] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
Metrics
  • Abstract views:  327
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2024
  • Accepted Date:  17 March 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回
    Baidu
    map