Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composite phase modulated beam steering controllable reflective metasurface

Wei Tao Zhang Yu-Jie Ge Hong-Yi Jiang Yu-Ying Wu Xu-Yang Sun Zhen-Yu Ji Xiao-Di Bu Yu-Wei Jia Ke-Ke

Citation:

Composite phase modulated beam steering controllable reflective metasurface

Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke
cstr: 32037.14.aps.73.20240764
PDF
HTML
Get Citation
  • Terahertz metasurface functional devices as an effective method to control terahertz waves have attracted extensive attention from researchers. In order to enhance the functionality and flexibility of the metasurface and adapt to diverse application scenarios and demands, a beam-steering controllable reflective metasurface is designed by combining the Pancharatnam-Berry phase principle and the phase change material vanadium dioxide in this work. The metasurface unit consists of five layers, they being the top layer that is a metal patterned layer, the third layer that is made of vanadium dioxide and located between the dielectric layers with different thickness, the dielectric layer that is made of polytetrafluoroethylene (PTFE), and the bottom layer that serves as a metal reflective layer. The metasurface units are rotated based on the Pancharatnam-Berry phase principle to obtain four metasurface units with fixed phase differences in between, after which the metasurface units are arranged in two dimensions based on the generalized Snell reflection law to obtain the desired phase-gradient deflected reflection beam. The insulating state-metallic state transition of the vanadium dioxide layer on the metasurface can change the phase gradient of the preset metasurface, thereby realizing the on/off function of deflection. The simulation results show that when the vanadium dioxide is in the insulating state, the phase gradient of the designed metasurface appears, and the metasurface can deflect the vertically incident circularly polarized wave with specific angle anomalies in a operating band of 1.1–2.0 THz; when the vanadium dioxide is in the metallic state, for the same operating band of the same metasurface, the phase gradient of the metasurface disappears, and the metasurface mirror reflects the vertically incident circularly polarized waves, thereby realizing the function switching. This design provides new possibilities for modulating the terahertz reflected beam, which will have potential applications in terahertz wireless communication and radar systems.
      Corresponding author: Ge Hong-Yi, gehongyi2004@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62271191, 61975053), the Natural Science Foundation of Henan Province, China (Grant No. 222300420040), the Innovative Funds Plan of Henan University of Technology (Grant No. 2021ZKCJ04), the Key Science and Technology Program of Henan Province, China (Grant Nos. 222102110246, 222103810072), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant Nos. 23HASTIT024, 22HASTIT017).
    [1]

    Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59 101957Google Scholar

    [2]

    Zeng J W, Luk T S, Gao J, Yang X D 2017 J. Opt. 19 125103Google Scholar

    [3]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light-Sci. Appl. 5 e16076Google Scholar

    [4]

    Zeng Y J, Feng C H, Li Q, Su X, Yu H B 2019 IEEE Photonics J. 11 4601212Google Scholar

    [5]

    Wang B X, Qin X F, Duan G Y, Yang G F, Huang W Q, Huang Z M 2024 Adv. Funct. Mater. 34 2402068Google Scholar

    [6]

    Zhou J, Zhao X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sens. 6 1884Google Scholar

    [7]

    Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y 2018 J. Alloy. Compd. 764 314Google Scholar

    [8]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218Google Scholar

    [10]

    Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 58 21Google Scholar

    [11]

    Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev. 18 2301197Google Scholar

    [12]

    Bai S S, Yang H Y 2022 Chin. J. Integr. Med. 28 366Google Scholar

    [13]

    Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 20 21896Google Scholar

    [14]

    Fedotov V 2021 Nat. Photonics 15 715Google Scholar

    [15]

    Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57 085104Google Scholar

    [16]

    Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 14 1Google Scholar

    [17]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [18]

    汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯 2023 72 098101Google Scholar

    Wang J L, Dong X C, Yin L, Yang Z X, Wan H D, Chen H M, Zhong K 2023 Acta Phys. Sin. 72 098101Google Scholar

    [19]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [20]

    Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53 025109Google Scholar

    [21]

    Ding Z P, Su W, Ye L P, Zhou Y H, Li W L, Zou J F, Tang B, Yao H B 2024 Phys. Chem. Chem. Phys. 26 8460Google Scholar

    [22]

    Jiang H, Wang J Y, Zhao S L, Ye L H, Zhang H, Zhao W R 2023 Opt. Commun. 536 129380Google Scholar

    [23]

    Zhao S L, Jiang H, Wang J Y, Zhu W C, Zhao W R 2023 Photonics 10 893Google Scholar

    [24]

    Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 8 1901182Google Scholar

    [25]

    Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91 155Google Scholar

    [26]

    Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811Google Scholar

    [27]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [28]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 325 1518Google Scholar

    [29]

    Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) pp1–2

    [30]

    杨森, 王佳云, 张婷, 于新颖 2022 光学学报 42 233Google Scholar

    Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42 233Google Scholar

    [31]

    Li J S, Yao J Q 2018 IEEE Photonics J. 10 1

    [32]

    Born M, Wolf E 2013 Phys. Today 53 77

    [33]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [34]

    Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 21 4784Google Scholar

    [35]

    Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44 169Google Scholar

  • 图 1  超表面单元 (a)三维示意图; (b)俯视图; (c)正视图; (d)旋转结构

    Figure 1.  Metasurface units: (a) 3D schematic diagram; (b) top view; (c) front view; (d) rotating structure.

    图 2  x极化波和y极化波垂直入射时, 超表面单元的同极化反射幅度(a)和相位(b)

    Figure 2.  The co-polarized reflection amplitude (a) and phase (b) of the metasurface unit when x-polarized and y-polarized waves are vertically incident.

    图 3  VO2处于绝缘态, LCP波垂直入射时, 不同旋转角α对应的超表面单元的同极化反射幅度(a)和相位(b)

    Figure 3.  VO2 is in an insulating state, with different rotation angles when LCP waves are vertically incident α, the amplitude (a) and phase (b) of co-polarized reflection of corresponding metasurface units.

    图 4  表面电流分布 (a)—(d) VO2处于绝缘态; (e)—(h) VO2处于金属态

    Figure 4.  Surface current distribution: (a)–(d) VO2 is in an insulating state; (e)–(h) VO2 is in a metallic state.

    图 5  不同入射角度下, 线极化波激励下超表面单元的反射相位和幅度 (a), (b) VO2处于绝缘态时, 不同入射角度下的幅度变化和相位变化; (c), (d) VO2处于金属态时, 不同入射角度下的幅度变化和相位变化

    Figure 5.  Reflection phase and amplitude of metasurface elements under linearly polarized wave excitation at different incident angles: (a), (b) Amplitude variation and phase change of VO2 at different incident angles when it is in an insulating state; (c), (d) amplitude variation and phase change of VO2 at different incident angles when it is in a metallic state.

    图 6  2-bit反射编码超表面, LCP波垂直入射 (a)超表面排布示意图; (b)超表面结构; (c) 1.1 THz处的三维远场散射图; (d) 1.1 THz处的归一化反射振幅图; (e) 2.0 THz处的三维远场散射图; (f) 2.0 THz处的归一化反射振幅图

    Figure 6.  2-bit reflection encoding metasurface, LCP wave vertically incident: (a) Schematic diagram of metasurface layout; (b) metasurface structure; (c) 3D far-field scattering map at 1.1 THz; (d) normalized reflection amplitude map at 1.1 THz; (e) 3D far-field scattering map at 2.0 THz; (f) normalized reflection amplitude map at 2.0 THz.

    图 7  归一化远场辐射图

    Figure 7.  Normalized far-field radiation pattern.

    图 8  归一化远场辐射图, 1.6 THz处不同入射角对应的反射角

    Figure 8.  Normalized far-field radiation pattern, reflection angles corresponding to different incident angles at 1.6 THz.

    图 9  反射超表面 (a)超表面相位梯度改变示意图; (b)三维远场散射图

    Figure 9.  Reflective metasurface: (a) Schematic diagram of phase gradient change on metasurface; (b) 3D far-field scattering map.

    表 1  超表面单元的主要参数

    Table 1.  Main parameters of metasurface units.

    Parameter D R1 R2 L1 L2 K1 K2 T1 T2 T3 H1 H2
    Value/μm 110 10 19 60 51 8 8 0.2 0.3 0.2 3 26
    DownLoad: CSV

    表 2  超表面单元

    Table 2.  Metasurface units.

    α45°135°90°
    俯视图
    2-bit00011011
    DownLoad: CSV
    Baidu
  • [1]

    Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59 101957Google Scholar

    [2]

    Zeng J W, Luk T S, Gao J, Yang X D 2017 J. Opt. 19 125103Google Scholar

    [3]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light-Sci. Appl. 5 e16076Google Scholar

    [4]

    Zeng Y J, Feng C H, Li Q, Su X, Yu H B 2019 IEEE Photonics J. 11 4601212Google Scholar

    [5]

    Wang B X, Qin X F, Duan G Y, Yang G F, Huang W Q, Huang Z M 2024 Adv. Funct. Mater. 34 2402068Google Scholar

    [6]

    Zhou J, Zhao X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sens. 6 1884Google Scholar

    [7]

    Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y 2018 J. Alloy. Compd. 764 314Google Scholar

    [8]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218Google Scholar

    [10]

    Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 58 21Google Scholar

    [11]

    Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev. 18 2301197Google Scholar

    [12]

    Bai S S, Yang H Y 2022 Chin. J. Integr. Med. 28 366Google Scholar

    [13]

    Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 20 21896Google Scholar

    [14]

    Fedotov V 2021 Nat. Photonics 15 715Google Scholar

    [15]

    Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57 085104Google Scholar

    [16]

    Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 14 1Google Scholar

    [17]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [18]

    汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯 2023 72 098101Google Scholar

    Wang J L, Dong X C, Yin L, Yang Z X, Wan H D, Chen H M, Zhong K 2023 Acta Phys. Sin. 72 098101Google Scholar

    [19]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [20]

    Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53 025109Google Scholar

    [21]

    Ding Z P, Su W, Ye L P, Zhou Y H, Li W L, Zou J F, Tang B, Yao H B 2024 Phys. Chem. Chem. Phys. 26 8460Google Scholar

    [22]

    Jiang H, Wang J Y, Zhao S L, Ye L H, Zhang H, Zhao W R 2023 Opt. Commun. 536 129380Google Scholar

    [23]

    Zhao S L, Jiang H, Wang J Y, Zhu W C, Zhao W R 2023 Photonics 10 893Google Scholar

    [24]

    Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 8 1901182Google Scholar

    [25]

    Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91 155Google Scholar

    [26]

    Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811Google Scholar

    [27]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [28]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 325 1518Google Scholar

    [29]

    Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) pp1–2

    [30]

    杨森, 王佳云, 张婷, 于新颖 2022 光学学报 42 233Google Scholar

    Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42 233Google Scholar

    [31]

    Li J S, Yao J Q 2018 IEEE Photonics J. 10 1

    [32]

    Born M, Wolf E 2013 Phys. Today 53 77

    [33]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [34]

    Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 21 4784Google Scholar

    [35]

    Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44 169Google Scholar

  • [1] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [6] Huang Shuai, Wu Tian-Hao, Guan Chun-Sheng, Ding Xu-Min, Wu Yu-Ming, Wu Qun, Tang Xiao-Bin. Cavity-excited Huygens’ metasurface for wavefront manipulation. Acta Physica Sinica, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [7] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Zhang Na, Zhao Jian-Min, Chen Ke, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Independent dual-beam control based on programmable coding metasurface. Acta Physica Sinica, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [10] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [11] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [12] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [13] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [16] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [17] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [19] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
Metrics
  • Abstract views:  337
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2024
  • Accepted Date:  01 October 2024
  • Available Online:  10 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回
Baidu
map