Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Encoding terahertz metasurface reflectors based on geometrical phase modulation

Jiang Zai-Chao Gong Zheng Zhong Yun-Xiang Cui Bin Zou Bin Yang Yu-Ping

Citation:

Encoding terahertz metasurface reflectors based on geometrical phase modulation

Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping
PDF
HTML
Get Citation
  • Multi-dimension and multi-freedom modulation of polarization state based on the geometrical-phase periodic encoding metasurface has important application prospects. Here, terahertz metasurface composed of specially shaped metal pattern coded particles is proposed. When the coded particles are normally incident, the amplitude reflectivity of the terahertz wave is above 80% in a range of 0.50–1.80 THz. Combined with the Pancharatnam-Berry (P-B) phase theory, 8 kinds of coded particles are designed by rotating the angle of the designed unit. Three kinds of 1-bit, 2-bit, and 3-bit periodic encoding metasurfaces with different encoding sequences are used to manipulate the reflected terahertz waves splitting into multiple-beam with different deflection angles. In addition, both reflection characteristics (including amplitude, phase, and phase coverage) of all coded particles and the angle deflection of the designed 2-bit periodic metasurface are measured by normal incidence THz time-domain spectrometer and variable incident angle THz time-domain spectrometer, respectively. Based on generalized Snell law and experimental results, the reason for the discrepancy between theoretical value and experimental value is further analyzed, which can provide a reference for the reverse design of the coded metasurfaces to meet various practical needs.
      Corresponding author: Zou Bin, zoubin@muc.edu.cn ; Yang Yu-Ping, ypyang@muc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFB2009303, 2017YFB00405402) and the National Natural Science Foundation of China (Grant No. 62075248).
    [1]

    Chen M L, Jiang L J, Sha W 2017 IEEE Antennas. Wirel. Propag. Lett. 17 110Google Scholar

    [2]

    Fu X, Liang H W, Li J T 2021 Front. Optoelectron 14 170Google Scholar

    [3]

    Ali S, Davies J R, Mendonca J T 2010 Phys. Rev. Lett. 105 035001Google Scholar

    [4]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [5]

    Gollub J N, Yurduseven O, Trofatter K P, Arnitz D, Lmani M F, Sleasman T, Boyarsky M, Rose A 2017 Sci. Rep. 7 42650Google Scholar

    [6]

    Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B 2018 Nanoscale 10 4237Google Scholar

    [7]

    Cai T, Wang G M, Xu H X, Tang S W, Li H P, Liang J G, Zhuang Y Q 2017 Annalen der Physik 530 1700321Google Scholar

    [8]

    Wang X, Ding J, Zheng B, An S, Zhai G, Zhang H 2018 Sci. Rep. 8 1876Google Scholar

    [9]

    Chen, Z, Hui D, Xiong Q, Chen L 2018 Appl. Phys. A 124 281Google Scholar

    [10]

    Lei L, Li S, Huang H, Tao K, Xu P 2018 Opt. Express 26 5686Google Scholar

    [11]

    Ghosh S, Lim S 2018 Sci. Rep. 8 10169Google Scholar

    [12]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [13]

    Biswas S R, Gutiérrez C E, Nemilentsau A, Lee I, Oh S, Avouris P, Low T 2018 Phys. Rev. Appl. 9 3034021Google Scholar

    [14]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M 2018 Opt. Commun. 412 1Google Scholar

    [15]

    Liu M Z, Zhu W Q, Huo P C, Feng L, Song M W, Zhang C, Chen L, Lezec Henri J, Lu Y Q, Agrawal A, Xu T 2021 Light: Sci. Appl. 10 107Google Scholar

    [16]

    Hosseininejad S E, Rouhi K, Neshat M, Aparicio A C, Alarcon E 2019 IEEE Trans. Nanotechnol 18 734Google Scholar

    [17]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar

    [18]

    Qi Y, Zhang Y, Liu C, Zhang T, Wang X 2020 Results Phys. 16 103012Google Scholar

    [19]

    Hu J, Bandyopadhyay S, Liu Y, Shao L 2021 Front. Phys. 8 586087Google Scholar

    [20]

    Yao J, Lin R, Chen M K, Tsai D P 2023 Advanced Photonics 5 024001Google Scholar

    [21]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [22]

    Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [23]

    Li F F, Fang W, Chen P, Poo Y 2018 Opt. Express 26 33878Google Scholar

    [24]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Opt. Mater. 7 1801429Google Scholar

    [25]

    Bai G D, Ma Q, Shahid I, Bao L, Jing H B, Zhang L, Wu H T, Wu R Y, Zhang H C, Yang C, Cui T J 2018 Adv. Opt. Mater. 6 1800657Google Scholar

    [26]

    Fu X M, Wang J F, Fan Y, Yang J, Li Y F, Yan M B, Zhang J Q, Qu S B 2019 J. Phys. D: Appl. Phys. 52 115103Google Scholar

    [27]

    Wang J, Jiang Y 2018 Opt. Commun. 416 125Google Scholar

    [28]

    Fang Q H, Wu L P, Pan W K, Li M H, Dong J F 2020 Appl. Phys. Lett. 117 074102Google Scholar

    [29]

    Kiani M, Tayarni M, Momeni A, Rajabalipanah H, Abdolali A 2020 Opt. Express 28 5410Google Scholar

    [30]

    Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Emerg. Sel. Topics Circuits Syst. 10 20Google Scholar

    [31]

    Qi Y P, Zhang B H, Liu C Q, Deng X Y 2020 IEEE Access 8 116675Google Scholar

    [32]

    Zheng C, Li J, Wang G, Li J, Wang S, Li M, Zhao H, Yue Z, Zhang Y, Zhang Y, Yao J 2021 Nanophotonics 10 1347Google Scholar

    [33]

    Tan Z Y, Fan F, Chang S J 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar

    [34]

    Zhao T, Jing X, Tang X, Bie X, Luo T, Gan H, He Y, Li C, Hong Z 2021 Opt. Laser Eng. 141 106556Google Scholar

    [35]

    Yu N, Genevet P, Kats M A, et al. 2011 Science 334 333Google Scholar

    [36]

    张腾, 王丽艳, 王新源, 崔彬, 杨玉平 2019 红外与毫米波学报 38 733Google Scholar

    Zhang T, Wang L, Wang X, Cui B, Yang Y 2019 J. Infrared Millim. Waves 38 733Google Scholar

    [37]

    Wang Q, Plum E, Yang Q, Zhang X, Xu Q, Xu Y, Han J, Zhang W 2018 Light: Sci. Appl. 7 25Google Scholar

    [38]

    Tan Y, Qu K, Chen K, et al. 2022 Adv. Opt. Mater. 10 2200565Google Scholar

  • 图 1  反射式太赫兹时域光谱仪的结构示意图 (a) 正入射; (b) 变角度

    Figure 1.  Schematic diagram of THz-TDS systems in reflection mode: (a) Normal incidence; (b) variable angle.

    图 2  (a) 编码粒子的结构示意图; (b) 圆偏振波正入射下单元的同偏振和交叉偏振的振幅反射率; 三个谐振频率处结构单元的表面电场(c)、表面电流(d)和背面电流(e)的分布图

    Figure 2.  (a) Structure of coded particle; (b) co-polarization and cross-polarization amplitude reflectivities of the unit under normal incidence of circularly polarized waves; distribution diagrams of the front surface electric field (c), front surface current (d), and rear surface current (e) of the structural unit at three resonant frequencies.

    图 3  不同旋转角α对应的(a)八个超表面编码粒子、(b)交叉偏振反射率和(c)反射相位

    Figure 3.  (a) Eight coded particles and the corresponding cross-polarized amplitude reflection (b) and phase (c) at different rotation angles α

    图 4  1.5 THz 线偏振波法向入射下1-bit编码超表面的远场散射图 (a) 3D远场散射图; (b) 2D远场散射图

    Figure 4.  Far-field scattering patterns of 1-bit encoded metasurface under normal incidence of LP waves at 1.5 THz: (a) 3D far-field scattering pattern; (b) 2D far-field scattering map.

    图 5  1.5 THz线偏振(LP)波法向入射下2-bit编码超表面的远场散射图, 其中(a) 3D远场散射, (b) 2D远场散射; 1.5 THz圆偏振(CP)波法向入射下2-bit编码超表面2D远场散射图, 其中(c)右旋圆偏振(RCP), (d)左旋圆偏振(LCP)

    Figure 5.  Far-field scattering patterns of 2-bit encoded metasurface under normal incidence of LP waves at 1.5 THz: (a) 3D far-field scattering pattern; (b) 2D far-field scattering map. 2D far-field scattering patterns of 2-bit encoded metasurface under normal incidence of CP waves at 1.5 THz: (c) RCP; (d) LCP.

    图 6  LP波法向入射下3-bit编码超表面和相同尺寸的裸金属板的远场散射图 (a) 1.50 THz处编码超表面的3D远场散射图; (b) 1.60 THz处编码超表面的3D远场散射图; (c) 1.70 THz处编码超表面的3D远场散射图; (d) 1.80 THz处编码超表面的3D远场散射图; (e) 1.50 THz处编码超表面的2D远场散射图; (f) 1.60 THz处编码超表面的2D远场散射图; (g) 1.70 THz处编码超表面的2D远场散射图; (h) 1.80 THz处编码超表面的2D远场散射图; (i) 1.50 THz处裸金属板的2D远场散射图; (j) 1.60 THz处裸金属板的2D远场散射图; (k) 1.70 THz处裸金属板的2D远场散射图; (l) 1.80 THz处裸金属板的2D远场散射图

    Figure 6.  Far-field scattering patterns of a 3-bit encoded metasurface and a bare metal plate under normal incidence of LP waves: 3D far-field scattering pattern of the encoded metasurface at 1.50 (a), 1.60 (b), 1.70 (c) and 1.8 THz (d); 2D far-field scattering pattern of the encoded metasurface at 1.50 (e), 1.60 (f), 1.70 (g) and 1.80 THz (h); 2D far-field scattering pattern of bare metal plate at 1.50 (i), 1.60 (j), 1.70 (k) and 1.80 THz (l).

    图 7  各个编码单元的反射特性测试结果 (a) 时域波形图; (b) FFT频谱图; (c) 反射率; (d) 反射相移

    Figure 7.  Reflection characteristics of each encoding unit: (a) Time-domain waveforms; (b) FFT spectra; (c) reflectivity; (d) phase shift.

    图 8  不同反射角度下2-bit编码超表面的反射特性测试结果 (a)时域波形图; (b)时域信号最大值Ep; (c) 1.00, 1.50和1.80 THz的振幅反射率.

    Figure 8.  Reflection characteristics of 2-bit coded metasurface under different reflection angles: (a) Time-domain waveforms; (b) the maximum value Ep of the time-domain signal; (c) the frequency components at 1.00, 1.50 and 1.80 THz.

    Baidu
  • [1]

    Chen M L, Jiang L J, Sha W 2017 IEEE Antennas. Wirel. Propag. Lett. 17 110Google Scholar

    [2]

    Fu X, Liang H W, Li J T 2021 Front. Optoelectron 14 170Google Scholar

    [3]

    Ali S, Davies J R, Mendonca J T 2010 Phys. Rev. Lett. 105 035001Google Scholar

    [4]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [5]

    Gollub J N, Yurduseven O, Trofatter K P, Arnitz D, Lmani M F, Sleasman T, Boyarsky M, Rose A 2017 Sci. Rep. 7 42650Google Scholar

    [6]

    Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B 2018 Nanoscale 10 4237Google Scholar

    [7]

    Cai T, Wang G M, Xu H X, Tang S W, Li H P, Liang J G, Zhuang Y Q 2017 Annalen der Physik 530 1700321Google Scholar

    [8]

    Wang X, Ding J, Zheng B, An S, Zhai G, Zhang H 2018 Sci. Rep. 8 1876Google Scholar

    [9]

    Chen, Z, Hui D, Xiong Q, Chen L 2018 Appl. Phys. A 124 281Google Scholar

    [10]

    Lei L, Li S, Huang H, Tao K, Xu P 2018 Opt. Express 26 5686Google Scholar

    [11]

    Ghosh S, Lim S 2018 Sci. Rep. 8 10169Google Scholar

    [12]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [13]

    Biswas S R, Gutiérrez C E, Nemilentsau A, Lee I, Oh S, Avouris P, Low T 2018 Phys. Rev. Appl. 9 3034021Google Scholar

    [14]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M 2018 Opt. Commun. 412 1Google Scholar

    [15]

    Liu M Z, Zhu W Q, Huo P C, Feng L, Song M W, Zhang C, Chen L, Lezec Henri J, Lu Y Q, Agrawal A, Xu T 2021 Light: Sci. Appl. 10 107Google Scholar

    [16]

    Hosseininejad S E, Rouhi K, Neshat M, Aparicio A C, Alarcon E 2019 IEEE Trans. Nanotechnol 18 734Google Scholar

    [17]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar

    [18]

    Qi Y, Zhang Y, Liu C, Zhang T, Wang X 2020 Results Phys. 16 103012Google Scholar

    [19]

    Hu J, Bandyopadhyay S, Liu Y, Shao L 2021 Front. Phys. 8 586087Google Scholar

    [20]

    Yao J, Lin R, Chen M K, Tsai D P 2023 Advanced Photonics 5 024001Google Scholar

    [21]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [22]

    Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [23]

    Li F F, Fang W, Chen P, Poo Y 2018 Opt. Express 26 33878Google Scholar

    [24]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Opt. Mater. 7 1801429Google Scholar

    [25]

    Bai G D, Ma Q, Shahid I, Bao L, Jing H B, Zhang L, Wu H T, Wu R Y, Zhang H C, Yang C, Cui T J 2018 Adv. Opt. Mater. 6 1800657Google Scholar

    [26]

    Fu X M, Wang J F, Fan Y, Yang J, Li Y F, Yan M B, Zhang J Q, Qu S B 2019 J. Phys. D: Appl. Phys. 52 115103Google Scholar

    [27]

    Wang J, Jiang Y 2018 Opt. Commun. 416 125Google Scholar

    [28]

    Fang Q H, Wu L P, Pan W K, Li M H, Dong J F 2020 Appl. Phys. Lett. 117 074102Google Scholar

    [29]

    Kiani M, Tayarni M, Momeni A, Rajabalipanah H, Abdolali A 2020 Opt. Express 28 5410Google Scholar

    [30]

    Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Emerg. Sel. Topics Circuits Syst. 10 20Google Scholar

    [31]

    Qi Y P, Zhang B H, Liu C Q, Deng X Y 2020 IEEE Access 8 116675Google Scholar

    [32]

    Zheng C, Li J, Wang G, Li J, Wang S, Li M, Zhao H, Yue Z, Zhang Y, Zhang Y, Yao J 2021 Nanophotonics 10 1347Google Scholar

    [33]

    Tan Z Y, Fan F, Chang S J 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar

    [34]

    Zhao T, Jing X, Tang X, Bie X, Luo T, Gan H, He Y, Li C, Hong Z 2021 Opt. Laser Eng. 141 106556Google Scholar

    [35]

    Yu N, Genevet P, Kats M A, et al. 2011 Science 334 333Google Scholar

    [36]

    张腾, 王丽艳, 王新源, 崔彬, 杨玉平 2019 红外与毫米波学报 38 733Google Scholar

    Zhang T, Wang L, Wang X, Cui B, Yang Y 2019 J. Infrared Millim. Waves 38 733Google Scholar

    [37]

    Wang Q, Plum E, Yang Q, Zhang X, Xu Q, Xu Y, Han J, Zhang W 2018 Light: Sci. Appl. 7 25Google Scholar

    [38]

    Tan Y, Qu K, Chen K, et al. 2022 Adv. Opt. Mater. 10 2200565Google Scholar

  • [1] Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke. Composite phase modulated beam steering controllable reflective metasurface. Acta Physica Sinica, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [2] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [4] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [5] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [6] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [7] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [8] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [9] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [10] Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong. Manipulating longitudinal photonic spin Hall effect based on dynamic and Pancharatnam-Berry phase. Acta Physica Sinica, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [11] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [12] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [13] Chen Huan, Ling Xiao-Hui, He Wu-Guang, Li Qian-Guang, Yi Xu-Nong. Generation of Bessel beam by manipulating Pancharatnam-Berry phase. Acta Physica Sinica, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [14] Zhang Jie-Fang, Dai Chao-Qing. Control of nonautonomous matter rogue waves. Acta Physica Sinica, 2016, 65(5): 050501. doi: 10.7498/aps.65.050501
    [15] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [16] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [17] Wang Yue, Wang Xuan, He Xun-Jun, Mei Jin-Shuo, Chen Ming-Hua, Yin Jing-Hua, Lei Qing-Quan. Progress in terahertz surface plasmonics. Acta Physica Sinica, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [18] Lu Jin-Xing, Huang Zhi-Ming, Huang Jing-Guo, Wang Bing-Bing, Shen Xue-Min. Analysis of the effect of phase-mismatch and material absorption on the terahertz-wave generation from GaSe. Acta Physica Sinica, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [19] Zong Feng-De, Yang Yang, Zhang Jie-Fang. Evolution and controlled manipulation of a Bose-Einstein condensate chirped soliton in external potentials. Acta Physica Sinica, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [20] Sun Hong-Qi, Zhao Guo-Zhong, Zhang Cun-Lin, Yang Guo-Zhen. The characteristics of terahertz radiation from InAs irradiated with femtosecond optical pulses of different wavelengths. Acta Physica Sinica, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
Metrics
  • Abstract views:  2057
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2023
  • Accepted Date:  28 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回
Baidu
map