Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies

Yan Xin Liang Lan-Ju Zhang Ya-Ting Ding Xin Yao Jian-Quan

Citation:

A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies

Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we propose a flexible, non-directional lowering scattering 1 bit coding metasurface which can significantly reduce the radar cross section (RCS) within an ultra wide terahertz (THz) frequency band. The total thickness of the coding metasurface is only 40.4 μm. The 1 bit coding metasurface is composed of “0” and “1” elements. And the “0” and “1” elements of metasurface are realized separately by a substrate without any metallic covering and that with a square metallic ring covering, the reflection phase difference of the two elements is about 180 degree in a wide THz frequency range. The theoretical, analytical, and simulation results show that the coding metasurfaces simply manipulate electromagnetic waves by coding the “0” and “1” elements in different sequences. Specific coding sequences result in the far-field scattering patterns varying from single beam to two, three, and numerous beams in THz frequencies. The metasurface with the numerous scattering waves can disperse the reflection into a variety of directions for non-periodic coding sequence way, and in each direction the energy is small based on the energy conservation principle. Full-wave simulation results show that the reflectivity less than -10 dB for coding metasurface can be achieved in a wide frequency range from 1-1.4 THz at normal incidence, and the RCS reduction as compared with a bare metallic plate with the same size is essentially more than 10 dB, in agreement with the bandwidth of reflectivity being less than -10 dB; the maximum reduction can be up to 19 dB. The wideband RCS reduction results are consistent with the bandwidth of 180 degrees phase difference between the two elements “0” and “1”. This wideband characteristic of RCS reduction can be kept up as the coding metasurface is wrapped around a metallic cylinder with a diameter of 4 mm. The presented method opens a new way to control THz waves by coding metasurface, so it is of great application values in stealth, imaging, and broadband communications of THz frequencies.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271066), the Science and Technology development Program of Shandong Province (Grant No. J13LN07), the China Postdoctoral Science Foundation (Grant No. 2015M571263), and the high Education Science Technology Program of Shandong Province (Grant No. J15LN36).
    [1]

    Ferguson B, Zhang X C 2002 Nat.Mater. 1 26

    [2]

    Tonouchi M 2007 Nat. Phontonics 1 97

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Xie L, Yao Y, Ying Y 2014 Appl. Spectrosc. Rev. 49 448

    [5]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 1

    [6]

    Nagatsuma T 2011 IEICE Electronic Exp. 8 1127

    [7]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [8]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [9]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2011 Opt. Express 20 635

    [10]

    Hua H Q, Jiang Y S, He Y T 2014 Prog. Electromagn. Res. B 59 193

    [11]

    Li S J, Cao X Yu, Gao J Z, Qiu R Z, Yi Y Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 陈红雅, 赵一, 杨群 2013 62 194101]

    [12]

    Cheng C W, Abbas M N, Chiu C W, Lai K T, Shih M H, Chang Y C 2012 Opt. Express 20 10376

    [13]

    Yang X M, Zhou X Y, Cheng Q, Ma H F, Cui T J 2010 Opt. Lett. 35 808

    [14]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103]

    [15]

    Chen J, Cheng Q, Zhao J, Cui T J 2014 Prog. Electromagn. Res. 146 71

    [16]

    Ye Y Q, Jin Y, He S L 2014 J. Opt. Soc. Am. B 27 498

    [17]

    Wang F W, Gong S X, Zhang S, Mu X, Hong T 2012 Prog. Electromagn. Res. 25 248

    [18]

    Yang H H, Cao X Y, Gao J, Li W, Yuan Z, Shang K 2013 Prog. Electromagn. Res. 33 31

    [19]

    Wang K, Zhao J, Cheng Q, Dong D S, Cui T J 2014 Sci. Rep. 4 5395

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Cheng H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [21]

    Li W H, Zhang J Q, Qu S B, Yuan H Y, Shen Y, Wang D J, Guo M C 2015 Acta Phys. Sin. 64 084101 (in Chinese) [李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超 2015 64 084101]

    [22]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

  • [1]

    Ferguson B, Zhang X C 2002 Nat.Mater. 1 26

    [2]

    Tonouchi M 2007 Nat. Phontonics 1 97

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Xie L, Yao Y, Ying Y 2014 Appl. Spectrosc. Rev. 49 448

    [5]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 1

    [6]

    Nagatsuma T 2011 IEICE Electronic Exp. 8 1127

    [7]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [8]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [9]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2011 Opt. Express 20 635

    [10]

    Hua H Q, Jiang Y S, He Y T 2014 Prog. Electromagn. Res. B 59 193

    [11]

    Li S J, Cao X Yu, Gao J Z, Qiu R Z, Yi Y Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 陈红雅, 赵一, 杨群 2013 62 194101]

    [12]

    Cheng C W, Abbas M N, Chiu C W, Lai K T, Shih M H, Chang Y C 2012 Opt. Express 20 10376

    [13]

    Yang X M, Zhou X Y, Cheng Q, Ma H F, Cui T J 2010 Opt. Lett. 35 808

    [14]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103]

    [15]

    Chen J, Cheng Q, Zhao J, Cui T J 2014 Prog. Electromagn. Res. 146 71

    [16]

    Ye Y Q, Jin Y, He S L 2014 J. Opt. Soc. Am. B 27 498

    [17]

    Wang F W, Gong S X, Zhang S, Mu X, Hong T 2012 Prog. Electromagn. Res. 25 248

    [18]

    Yang H H, Cao X Y, Gao J, Li W, Yuan Z, Shang K 2013 Prog. Electromagn. Res. 33 31

    [19]

    Wang K, Zhao J, Cheng Q, Dong D S, Cui T J 2014 Sci. Rep. 4 5395

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Cheng H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [21]

    Li W H, Zhang J Q, Qu S B, Yuan H Y, Shen Y, Wang D J, Guo M C 2015 Acta Phys. Sin. 64 084101 (in Chinese) [李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超 2015 64 084101]

    [22]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

  • [1] Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke. Composite phase modulated beam steering controllable reflective metasurface. Acta Physica Sinica, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [2] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [4] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [6] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [7] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [8] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [9] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [10] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [11] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [12] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [13] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [14] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [15] Wang Rui-Jun, Deng Bin, Wang Hong-Qiang, Qin Yu-Liang. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region. Acta Physica Sinica, 2014, 63(13): 134102. doi: 10.7498/aps.63.134102
    [16] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [17] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [18] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [19] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [20] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
Metrics
  • Abstract views:  7418
  • PDF Downloads:  535
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2015
  • Accepted Date:  26 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map