-
提出了一种基于二氧化钒且工作频段可切换的太赫兹编码超表面. 该编码超表面由金属-二氧化钒复合层、聚酰亚胺介质层、金属反射层构成, 主要通过对顶层双裂环谐振器和十字结构的参数进行设计, 获得其所需的性能; 而二氧化钒材料的引入, 巧妙地使其可工作于双频点, 进而实现不同功能的切换. 仿真结果表明: 当二氧化钒处于绝缘态时, 在f1 = 0.34 THz的圆极化波垂直入射下, 设计的编码超表面可以视为3-bit Pancharatnam-Berry相位编码超表面, 通过对单元中双裂环谐振器设计卷积编码序列, 使该编码超表面具有以特定角度出射拓扑荷数l = ±1涡旋波束的功能; 当二氧化钒处于金属态时, 在f2 = 0.74 THz的正交线极化波垂直入射下, 设计的编码超表面可以视为2-bit各向异性编码超表面, 通过对单元中十字结构分别设计随机编码序列和棋盘格编码序列, 使该编码超表面具有雷达散射截面缩减和波束分束的功能. 其可为太赫兹电磁超材料多功能器件的设计提供一定的参考.Terahertz (THz) wave has the advantages of low photon energy, high resolution, large communication bandwidth, etc. It has broad application prospects in security detection, high-resolution imaging, high-speed communication, and other fields. In recent years, as a new way to control THz wave, THz metasurface functional devices have attracted extensive attention of researchers. In this work, vanadium dioxide (VO2), a phase change material, is introduced into the coding metasurface. By regulating a circularly polarized wave and the orthogonal linearly polarized waves independently, a multi-function coding metasurface that can work at dual frequency points is obtained. It is composed of three layers. The top layer is a metal-VO2 composite structure. The middle is a polyimide dielectric layer. The bottom is a metal ground. Under certain conditions, the double split ring resonator (DSRR) and the cross structure in the top layer are relatively independent. Designing the coding sequences for them enable the coding metasurface to have multiple functions. The electromagnetic simulation software CST is used to establish model and conduct simulation, and the obtained results are as follows. When the VO2 is in an insulating state and a circularly polarized wave at 0.34 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the DSRR. The DSRR is rotated to meet the requirements of 3-bit Pancharatnam-Berry phase coding. The coding sequence is designed to generate vortex beams with the topological charge l = ±1 at a specific angle. The VO2 state is changed into a metallic state, and the DSRR can be equivalent to a metal ring. When the orthogonal linearly polarized wave at 0.74 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the cross structure. Because of its anisotropy, four different 2-bit coding metasurface elements can be obtained respectively by changing the length of the horizontal arm and the vertical arm. The design of appropriate coding sequences can reduce the radar cross section of the x-polarized wave and the beam splitting of the y-polarized wave, and the results have broadband characteristics. Multiple coding sequences can be designed by special characteristics of the coding metasurface, then various expected functions can be realized on the same metasurface. It solves the problem of single function of ordinary metasurface devices to a certain extent, and paves a novel way to the development of THz multi-function systems.
-
Keywords:
- terahertz /
- coding metasurface /
- vanadium dioxide /
- multi-function
[1] Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W L 2018 Appl. Phys. Lett. 113 101104Google Scholar
[2] Asl A B, Rostami A, Amiri I S 2020 Opt. Quant. Electron. 52 155Google Scholar
[3] Gaufillet F, Marcellin S, Akmansoy É 2016 IEEE J. Sel. Top. Quant. 23 4700605
[4] Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102Google Scholar
[5] Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, Ma Y G, Ying Y B 2016 ACS Photonics 3 2308Google Scholar
[6] Luo J, Liang J G, Yu Y, Ma H, Yang R S, Fan Y C, Wang G M, Cai T 2020 Adv. Opt. Mater. 8 2000449Google Scholar
[7] Peng L, Jiang X, Li S M 2018 Nanoscale Res. Lett. 13 385Google Scholar
[8] Cheng Z Z, Cheng Y Z 2019 Opt. Commun. 435 178Google Scholar
[9] Zhou C, Peng X Q, Li J S 2020 Optik 216 164937Google Scholar
[10] 王羚, 高峰, 滕书华, 谭志国, 张星, 娄军, 邓力 2023 光学学报 43 0324001Google Scholar
Wang L, Gao F, Teng S H, Tan Z G, Zhang X, Lou J, Deng L 2023 Acta Opt. Sin. 43 0324001Google Scholar
[11] Cui T J, Qi M Q, Wan X, et al. 2014 Light-sci. Appl. 3 e218Google Scholar
[12] Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar
[13] Cheng J, Li J S 2022 Opt. Commun. 524 128758Google Scholar
[14] Bai G D, Ma Q, Iqbal S, et al. 2018 Adv. Opt. Mater. 6 1800657Google Scholar
[15] Zhang P, Li L, Zhang X M, Liu H X, Shi Y 2019 IEEE Access 7 110387Google Scholar
[16] Guo W L, Wang G M, Luo X Y, Hou H S, Chen K, Feng Y J 2020 Ann. Phys-berlin. 532 1900472Google Scholar
[17] Liu S, Cui T J, Xu Q, et al. 2016 Light-sci. Appl. 5 e16076Google Scholar
[18] Li J, Li J T, Yang Y, et al. 2020 Carbon 163 34Google Scholar
[19] Shabanpour J, Sedaghat M, Nayyeri V, Oraizi H, Ramahi O M 2021 Opt. Express 29 14525Google Scholar
[20] Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory. Simul. 3 1900183Google Scholar
[21] Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar
[22] Lu C, Lu Q J, Gao M, Lin Y 2021 Nanomaterials 11 114Google Scholar
[23] Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746Google Scholar
[24] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar
[25] Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar
[26] Liu X B, Wang Q, Zhang X Q, et al. 2019 Adv. Opt. Mater. 7 1900175Google Scholar
[27] Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar
[28] Shabanpour J 2020 J. Mater. Chem. C 8 7189Google Scholar
[29] Song Z Y, Wei M L, Wang Z S, Cai G X, Liu Y N, Zhou Y G 2019 IEEE Photonics J. 11 4600607Google Scholar
[30] Zhang C H, Zhou G C, Wu J B, et al. 2019 Phys. Rev. Appl. 11 054016Google Scholar
[31] Ran Y Z, Liang J G, Cai T, Li H P 2018 Opt. Commun. 427 101Google Scholar
[32] Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156Google Scholar
[33] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[34] Yu P, Besteiro L V, Huang Y J, et al. 2019 Adv. Opt. Mater. 7 1800995Google Scholar
[35] Zhang M, Cao M S, Shu J C, Cao W Q, Li L, Yuan J 2021 Mat. Sci. Eng. R Rep. 145 100627Google Scholar
[36] Liu X, Gao J, Xu L M, Cao X Y, Zhao Y, Li S J 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar
[37] Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar
[38] 封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387Google Scholar
Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387Google Scholar
-
图 10 CP波垂直入射下编码超表面的3D远场方向图和2D远场方向图 (a) LCP波垂直入射下的3D远场方向图; (b) RCP波垂直入射下的3D远场方向图; (c) LCP波垂直入射下的2D远场方向图; (d) RCP波垂直入射下的2D远场方向图
Fig. 10. 3D far-field pattern and 2D far-field pattern of coding metasurface under the vertical incidence of CP wave: (a) 3D far-field pattern under the vertical incidence of LCP wave; (b) 3D far-field pattern under the vertical incidence of RCP wave; (c) 2D far-field pattern under the vertical incidence of LCP wave; (d) 2D far-field pattern under the vertical incidence of RCP wave.
-
[1] Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W L 2018 Appl. Phys. Lett. 113 101104Google Scholar
[2] Asl A B, Rostami A, Amiri I S 2020 Opt. Quant. Electron. 52 155Google Scholar
[3] Gaufillet F, Marcellin S, Akmansoy É 2016 IEEE J. Sel. Top. Quant. 23 4700605
[4] Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102Google Scholar
[5] Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, Ma Y G, Ying Y B 2016 ACS Photonics 3 2308Google Scholar
[6] Luo J, Liang J G, Yu Y, Ma H, Yang R S, Fan Y C, Wang G M, Cai T 2020 Adv. Opt. Mater. 8 2000449Google Scholar
[7] Peng L, Jiang X, Li S M 2018 Nanoscale Res. Lett. 13 385Google Scholar
[8] Cheng Z Z, Cheng Y Z 2019 Opt. Commun. 435 178Google Scholar
[9] Zhou C, Peng X Q, Li J S 2020 Optik 216 164937Google Scholar
[10] 王羚, 高峰, 滕书华, 谭志国, 张星, 娄军, 邓力 2023 光学学报 43 0324001Google Scholar
Wang L, Gao F, Teng S H, Tan Z G, Zhang X, Lou J, Deng L 2023 Acta Opt. Sin. 43 0324001Google Scholar
[11] Cui T J, Qi M Q, Wan X, et al. 2014 Light-sci. Appl. 3 e218Google Scholar
[12] Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar
[13] Cheng J, Li J S 2022 Opt. Commun. 524 128758Google Scholar
[14] Bai G D, Ma Q, Iqbal S, et al. 2018 Adv. Opt. Mater. 6 1800657Google Scholar
[15] Zhang P, Li L, Zhang X M, Liu H X, Shi Y 2019 IEEE Access 7 110387Google Scholar
[16] Guo W L, Wang G M, Luo X Y, Hou H S, Chen K, Feng Y J 2020 Ann. Phys-berlin. 532 1900472Google Scholar
[17] Liu S, Cui T J, Xu Q, et al. 2016 Light-sci. Appl. 5 e16076Google Scholar
[18] Li J, Li J T, Yang Y, et al. 2020 Carbon 163 34Google Scholar
[19] Shabanpour J, Sedaghat M, Nayyeri V, Oraizi H, Ramahi O M 2021 Opt. Express 29 14525Google Scholar
[20] Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory. Simul. 3 1900183Google Scholar
[21] Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar
[22] Lu C, Lu Q J, Gao M, Lin Y 2021 Nanomaterials 11 114Google Scholar
[23] Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746Google Scholar
[24] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar
[25] Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar
[26] Liu X B, Wang Q, Zhang X Q, et al. 2019 Adv. Opt. Mater. 7 1900175Google Scholar
[27] Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar
[28] Shabanpour J 2020 J. Mater. Chem. C 8 7189Google Scholar
[29] Song Z Y, Wei M L, Wang Z S, Cai G X, Liu Y N, Zhou Y G 2019 IEEE Photonics J. 11 4600607Google Scholar
[30] Zhang C H, Zhou G C, Wu J B, et al. 2019 Phys. Rev. Appl. 11 054016Google Scholar
[31] Ran Y Z, Liang J G, Cai T, Li H P 2018 Opt. Commun. 427 101Google Scholar
[32] Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156Google Scholar
[33] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[34] Yu P, Besteiro L V, Huang Y J, et al. 2019 Adv. Opt. Mater. 7 1800995Google Scholar
[35] Zhang M, Cao M S, Shu J C, Cao W Q, Li L, Yuan J 2021 Mat. Sci. Eng. R Rep. 145 100627Google Scholar
[36] Liu X, Gao J, Xu L M, Cao X Y, Zhao Y, Li S J 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar
[37] Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar
[38] 封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387Google Scholar
Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387Google Scholar
计量
- 文章访问数: 3957
- PDF下载量: 187
- 被引次数: 0