Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface

Luan Jia-Qi Zhang Ya-Jie Chen Yu Gao Ding-Shan Li Pei-Li Li Jia-Qi Li Jia-Qi

Citation:

Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface

Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi
PDF
HTML
Get Citation
  • Digitally encoded hypersurfaces show great potential in the field of electromagne-tic wave modulation. Currently, digitally encoded hypersurfaces in the terahertz band are mainly classified into two types: structure-encoded and controllable material-encoded. Once a structure-encoded hypersurface is fabricated, its function is fixed, which makes it difficult to adapt to changing application requirements. In contrast, the controllable material-encoded hypersurfaces can achieve dynamic regulation and multifunctional switching of terahertz beams by changing the external excitation, which shows good reconfigurability. To address this challenge, a Dirac semimetal-based encoded hypersurface is proposed in this paper. The Fermi energy level of the Dirac semimetal is varied by changing the bias voltage, which in turn dynamically adjusts its relative permittivity to obtain the coded unit. Besides, the traditional gradient-phase method encodes arrays by periodically arranging the cell structure, but there are limitations in the flexibility and accuracy of beam modulation. In order to break through these limitations, this paper employs a genetic algorithm for the inverse design of hypersurface coding arrays, which effectively improves the initiative and flexibility of beam modulation. In this paper, a three-layer terahertz-encoded hypersurface unit with a “back” structure composed of Dirac semimetallic materials is firstly designed, and the Dirac semimetallic dielectric constant is dynamically adjusted by using an applied bias voltage, so that the hypersurface unit is at 1.95 THz when the Fermi energy levels are 0.01 eV, 0.05 eV, 0.09 eV, and 0.55 eV can achieve 2bit coding. The results show that, for beam configuration, single-beam and multi-beam (two-beam to five-beam) modulation can be achieved at 1.95 THz within 40° pitch angle and 360° azimuth angle; for vortex beam generation, single-vortex beams with ±1 and ±2 topological charges can be generated, with mode purity exceeding 60%, and single-vortex, double-vortex and triple-vortex beams in pitch angle and 360° azimuth angle can be realised with the vortex-phase convolution. In terms of RCS reduction, in the frequency range of 1.72–2.51 THz, the hypersurface is able to achieve more than 10 dB of RCS reduction, especially in the frequency range of 1.82 THz, the maximum reduction value is up to 27.5 dB. achieves the diversity of functions, but also has a high degree of reconfigurability to meet the needs of complex application scenarios.
      Corresponding author: Li Pei-Li, lipl@njupt.edu.cn
    • Funds: Project supported by the Open Project Program of Wuhan National Laboratory for Optoelectronics, China (Grant No. 2022WNLOKF012).
    [1]

    Davies A G, Linfield E H, Johnston M B 2002 Phys. Med. Biol. 47 3679Google Scholar

    [2]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [3]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [4]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [5]

    Zhang L, Wu R Y, Bai G D, Wu H T, Mu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [6]

    黄若彤, 李九生 2023 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [7]

    Nie R X, He C H, Zhang R X, Song Z Y 2023 Opt. Laser Technol. 159 109010Google Scholar

    [8]

    Zhao Y Z, Huang C, Song Z L, Yu C Y, Liang S, Luo X G, Qing A Y 2019 IEEE Access 7 79671Google Scholar

    [9]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [10]

    Xiao B G, Zhang Y, Tong S J, Yu J B, Xiao L H 2020 Opt. Express 28 7125Google Scholar

    [11]

    Jiang C Y, Li Z K, Lv X Y, Tian M, Liu M, Zhang H Y, Zhang Y P 2023 Opt. Commun. 540 129506Google Scholar

    [12]

    Yang R S, Lou J, Zhang F L, Zhu W, Xu J, Cai T, Fu Q H, Li H, Fan Y C 2021 Adv. Photonics Res. 2 2100103Google Scholar

    [13]

    Yang R S, Zhang F L, Li Z C, Fu Q H, Fan Y C 2023 Opt. Laser Technol. 163 109380Google Scholar

    [14]

    Yang R S, Fan Y C, Zhu W, Hu C J, Chen S N, Wei H, Chen W J, Chan C T, Zhao Q, Zhou J, Zhang F L, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar

    [15]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar

    [16]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [17]

    贾宇翔, 王甲富, 陈维, 随赛, 朱瑞超, 邱天硕, 李勇峰, 韩亚娟, 屈绍波 2021 雷达学报 10 220Google Scholar

    Jia Y X, Wang J F, Chen W, Sui S, Zhu R C, Qiu T S, Li Y F, Han Y J, Qu S B 2021 J. Radars 10 220Google Scholar

    [18]

    韩丁, 马子寅, 王俊林, 王鑫, 刘苏雅拉图 2022 中国激光 49 168

    Han D, Ma Z Y, Wang J L, Wang X, Liu S Y L T 2022 Chin. J. Lasers 49 168

    [19]

    Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Zhang J Q, Xu Z, Qu S B 2019 J. Phys. D: Appl. Phys. 52 035103Google Scholar

    [20]

    Xiao T, Liu C G, Cheng R S, Cao L F, Tang G P CNSRP Qingdao, China September 24–27, 2023 p4 (in Chinese)[肖彤, 刘成国, 程润生, 曹立锋, 唐光普 第十八届全国电波传播年会 中国青岛 2023年 9月24—27日 第4页]

    [21]

    Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar

    [22]

    Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar

    [23]

    Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar

  • 图 1  基于狄拉克半金属“回”字形单元结构示意图 (a)单元俯视图; (b)单元侧视图

    Figure 1.  Based on Dirac semi-metal “back” font structure diagram: (a) Top view of the unit; (b) side view of the unit.

    图 2  超表面单元结构在费米能级为0.09 eV时, 不同周期 D (a), 大正方形边长 P (b), 矩形条宽度 w (c), 顶层贴片厚度 m (d); 小正方形边长 l (e); 介质层厚度 h (f) 的反射幅度及反射相位曲线

    Figure 2.  Reflection amplitude and reflection phase curves of the hypersurface unit structure at a Fermi energy level of 0.09 eV with different (a) period D, (b) large square side length P, (c) rectangular strip width w, (d) top patch thickness m, (e) small square side length l, and (f) dielectric layer thickness h.

    图 3  不同频率、不同费米能级下狄拉克半金属的相对介电常数的实部和虚部

    Figure 3.  The real and imaginary parts of the relative permittivity of Dirac semi-metals at different frequencies and Fermi levels.

    图 4  基于遗传算法逆向设计阵列编码流程图

    Figure 4.  Genetic algorithm is used to reverse design array coding flow chart.

    图 5  不同编码周期下迭代次数与适应度函数值之间的关系图

    Figure 5.  The relationship between the number of iterations and the fitness function value under different coding cycles.

    图 6  超表面编码单元结构, 狄拉克半金属费米能级为0.01, 0.05, 0.09 eV及0.55 eV (a) 幅度响应曲线; (b) 相位响应曲线

    Figure 6.  Metasurface coding unit structure at Dirac semi-metallic Fermi level of 0.01, 0.05, 0.09 eV and 0.55 eV: (a) Amplitude response curves; (b) phase response curve.

    图 7  (a)—(d) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 50°), (20°, 120°), (30°, 225°)及(40°, 340°)时的单波束阵列编码图样; (e)—(h) 对应的三维远场散射图

    Figure 7.  (a)–(d) Array coding sequence results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (10°, 50°), (20°, 120°), (30°, 225°) and (40°, 340°) respectively; (e)–(h) the corresponding far-field scattering results.

    图 8  1.95 THz处加运算之前和之后编码排布及三维远场散射结果

    Figure 8.  Pre-and post-array arrangements and 3D far-field scattering results for addition at 1.97 THz.

    图 9  (a), (e) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(20°, 0°), (20°, 90°)双波束的阵列编码图与远场散射结果; (b), (f) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 45°), (20°, 180°), (25°, 320°)三波束的阵列编码图与远场散射结果; (c), (g) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(25°, 0°), (30°, 110°), (30°, 220°), (35°, 315°)四波束的阵列编码图与远场散射结果; (d), (h) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(25°, 0°), (25°, 75°), (25°, 150°), (25°, 225°), (25°, 300°)五波束的阵列编码图与远场散射结果

    Figure 9.  (a), (e) Array coding sequence diagrams and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (20°, 0°) and (20°, 90°) double beams, respectively; (b), (f) array coding sequence diagrams and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (10°, 45°), (20°, 180°) and (25°, 320°) triple beams, respectively; (c), (g) array coding sequence and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (25°, 0°), (30°, 110°), (30°, 220°) and (35°, 315°) four beams, respectively; (d), (h) array coding sequence and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (25°, 0°), (25°, 75°), (25°, 150°), (25°, 225°) and (25°, 300°) five beams, respectively.

    图 10  拓扑电荷数分别为$ l = - 1 $, $ l = + 1 $, $ l = - 2 $, $ l = + 2 $的涡旋相位分布图

    Figure 10.  Diagrams of vortex phase distribution for topological charges $ l = - 1 $, $ l = + 1 $, $ l = - 2 $, $ l = + 2 $ respectively.

    图 11  (a)—(d) $ l = \pm 1 $和$ l = \pm 2 $的远场散射图及相位图; (e)—(h) 相对应的模式纯度图

    Figure 11.  Far-field scattering diagram and phase diagram: (a)–(d) $ l = \pm 1 $ and $ l = \pm 2 $; (e)–(h) the corresponding pattern purity distribution diagrams.

    图 12  (a), (b) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ 分别为(20°, 120°), (30°, 225°)时的单涡旋波束阵列编码图; (c), (d)对应的三维远场散射图; (e), (f)对应的模式纯度图

    Figure 12.  (a), (b) Coding diagram of a single vortex beam array at $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ of (20°, 120°) and (30°, 225°) , respectively; (c), (d) the corresponding three-dimensional far-field scattering diagram; (e), (f) the corresponding model purity diagram.

    图 13  (a), (c) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(20°, 0°), (20°, 90°)双涡旋波束的阵列编码图及远场散射俯视图; (b), (d) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 45°), (20°, 180°), (25°, 320°)三涡旋波束的阵列编码图及远场散射俯视图

    Figure 13.  (a), (c) The array coding diagram and the top view of the far-field scattering of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for the (20°, 0°) and (20°, 90°) double-vortex beams, respectively; (b), (d) the array coding diagram and the top view of the far-field scattering of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $for the (10°, 45°), (20°, 180°) and (25°, 320°) three-vortex beams, respectively.

    图 14  编码超表面与同等尺寸的金属板相比RCS缩减图与超表面阵列编码图

    Figure 14.  RCS reduction plot of the encoded hypersurface compared to a metal plate of the same size with the hypersurface array encoded.

    图 15  (a) φ = 0°, (b) φ = 90°时编码超表面和同等尺寸的金属板远场散射图的三维和一维结果对比图

    Figure 15.  (a) φ = 0°, (b) φ = 90° comparison of three-dimensional and one-dimensional results of the far-field scattering pattern encoding metasurface and metal plate of the same size.

    表 1  傅里叶卷积加运算具体规则

    Table 1.  Specific rules for the Fourier convolutional addition operation.

    0
    (0°/360°)
    1
    (90°)
    2
    (180°)
    3
    (270°)
    0
    (0°/360°)
    0123
    1
    (90°)
    1230
    2
    (180°)
    2301
    3
    (270°)
    3012
    DownLoad: CSV
    Baidu
  • [1]

    Davies A G, Linfield E H, Johnston M B 2002 Phys. Med. Biol. 47 3679Google Scholar

    [2]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [3]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [4]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [5]

    Zhang L, Wu R Y, Bai G D, Wu H T, Mu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [6]

    黄若彤, 李九生 2023 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [7]

    Nie R X, He C H, Zhang R X, Song Z Y 2023 Opt. Laser Technol. 159 109010Google Scholar

    [8]

    Zhao Y Z, Huang C, Song Z L, Yu C Y, Liang S, Luo X G, Qing A Y 2019 IEEE Access 7 79671Google Scholar

    [9]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [10]

    Xiao B G, Zhang Y, Tong S J, Yu J B, Xiao L H 2020 Opt. Express 28 7125Google Scholar

    [11]

    Jiang C Y, Li Z K, Lv X Y, Tian M, Liu M, Zhang H Y, Zhang Y P 2023 Opt. Commun. 540 129506Google Scholar

    [12]

    Yang R S, Lou J, Zhang F L, Zhu W, Xu J, Cai T, Fu Q H, Li H, Fan Y C 2021 Adv. Photonics Res. 2 2100103Google Scholar

    [13]

    Yang R S, Zhang F L, Li Z C, Fu Q H, Fan Y C 2023 Opt. Laser Technol. 163 109380Google Scholar

    [14]

    Yang R S, Fan Y C, Zhu W, Hu C J, Chen S N, Wei H, Chen W J, Chan C T, Zhao Q, Zhou J, Zhang F L, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar

    [15]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar

    [16]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [17]

    贾宇翔, 王甲富, 陈维, 随赛, 朱瑞超, 邱天硕, 李勇峰, 韩亚娟, 屈绍波 2021 雷达学报 10 220Google Scholar

    Jia Y X, Wang J F, Chen W, Sui S, Zhu R C, Qiu T S, Li Y F, Han Y J, Qu S B 2021 J. Radars 10 220Google Scholar

    [18]

    韩丁, 马子寅, 王俊林, 王鑫, 刘苏雅拉图 2022 中国激光 49 168

    Han D, Ma Z Y, Wang J L, Wang X, Liu S Y L T 2022 Chin. J. Lasers 49 168

    [19]

    Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Zhang J Q, Xu Z, Qu S B 2019 J. Phys. D: Appl. Phys. 52 035103Google Scholar

    [20]

    Xiao T, Liu C G, Cheng R S, Cao L F, Tang G P CNSRP Qingdao, China September 24–27, 2023 p4 (in Chinese)[肖彤, 刘成国, 程润生, 曹立锋, 唐光普 第十八届全国电波传播年会 中国青岛 2023年 9月24—27日 第4页]

    [21]

    Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar

    [22]

    Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar

    [23]

    Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar

  • [1] Wang Chao, Li Xiu-Feng, Zhang Sheng-Jun, Wang Ru-Zhi. Design of broadband gradient resistive film metamaterial absorber based on genetic algorithm. Acta Physica Sinica, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] Han Jun-Jie, Qian Si-Xian, Zhu Chuan-Ming, Huang Zhi-Xiang, Ren Xin-Gang, Cheng Guang-Shang. Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface. Acta Physica Sinica, 2023, 72(14): 148101. doi: 10.7498/aps.72.20230457
    [3] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [4] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [6] Zhang Jian-Guo, Yi Zao, Kang Yong-Qiang, Ren Hao, Wang Wen-Yan, Zhou Jing-Fan, Hao Hui-Zhen, Chang Hui-Dong, Gao Ying-Hao, Chen Ya-Hui, Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by localized surface plasmon resonances. Acta Physica Sinica, 2022, 71(12): 128101. doi: 10.7498/aps.70.20220288
    [7] Zhang Jian-Guo,  Yi Zao,  Kang Yong-Qiang,  Ren Hao,  Wang Wen-Yan,  Zhou Jing-Fan,  Hao Hui-Zhen,  Chang Hui-Dong,  Gao Ying-Hao,  Chen Ya-Hui,  Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by the localized surface plasmon resonances. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [8] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [9] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [10] Chang Hong-Wei, Ma Hua, Zhang Jie-Qiu, Zhang Zhi-Yuan, Xu Zhuo, Wang Jia-Fu, Qu Shao-Bo. Optimization of metamaterial based weighted real-coded genetic algorithm. Acta Physica Sinica, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [11] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [12] Zu Yun-Xiao, Zhou Jie. Cognitive radio resource allocation based on combined chaotic genetic algorithm. Acta Physica Sinica, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [13] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [14] Cheng Xing-Hua, Tang Long-Gu, Chen Zhi-Tao, Gong Min, Yu Tong-Jun, Zhang Guo-Yi, Shi Rui-Ying. A genetic algorithm research on Lorentz oscillator model in infrared spectra of GaMnN. Acta Physica Sinica, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [15] Niu Pei_Feng, Zhang Jun, Guan Xin_Ping. Research on a proportional-integral-derivative neural network decoupling control based on genetic algorithm optimization for unified chaotic system. Acta Physica Sinica, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [16] Lin Hai, Wu Chen-Xu. Evolution of strategies based on genetic algorithm in the iterated prisoner’s dilemma on complex networks. Acta Physica Sinica, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [17] Gong Chun-Juan, Hu Xiong-Wei. Design of triangular lattice photonic crystals using genetic algorithms. Acta Physica Sinica, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [18] Bao Wen-Xing, Zhu Chang-Chun, Cui Wan-Zhao. Study of structure optimization of carbon nanotubes using hybrid genetic algorithm based on clonal selection principle. Acta Physica Sinica, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
    [19] Wang Dong-Feng. Genetic algorithm optimization based proportional-integral-derivative controller for unified chaotic system. Acta Physica Sinica, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [20] Wu Zhong-Qiang, Ao Dun, Liu Kun. Fuzzy control of a chaotic system based on genetic algorithm. Acta Physica Sinica, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
Metrics
  • Abstract views:  1519
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2024
  • Accepted Date:  21 March 2024
  • Available Online:  05 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回
Baidu
map