-
Terahertz (THz) has the characteristics of non ionization, penetration, water absorption, high resolution, etc. It has shown an important application prospect in many fields, such as non-destructive testing, imaging and communication. However, THz is in the transition frequency band ranges from macro-electronics to micro-photonics, so, it belongs to the interdisciplinary field, forming the “terahertz gap” in electromagnetic wave. In recent years, with the continuous development and improvement of THz radiation source and detection technology, the THz modulation technology has gradually aroused the interest of researchers. Metamaterials with many properties that natural materials do not possess provide a common way to control THz. The two-dimensional structure of a metamaterial is called a metasurface. The coding metasurface encodes the phase digitally so that the electromagnetic wave can be regulated. It is proposed that it is first in the microwave band and then extended to the THz band. In the microwave band, the number, direction and amplitude of the far-field beams can be changed dynamically by programming, which is connected with the integrated circuit such as FPGA by using diodes, but due to the limitation of diode size and micro-nano manufacturing technology, the programmable metasurface in microwave band cannot be well used in THz band. In order to improve the flexibility of THz coding metasurface, in this paper we choose the phase change material vanadium dioxide (VO2) to active modulation coding metasurface. In this paper, we analyze the VO2’s insulating state before the phase transformation and metallic state after the phase transformation. Then designing an active control 1 bit coding metasurface by using the influence of the two states on the amplitude and phase of the unit structure, which is composed of VO2, polyimide and aluminum, can not only realize the basic function of coding metasurface adjusting the electromagnetic wave beams, but alsoimplement the switching of two kinds of far-field beams at 1.1 THz for the same coding sequence by thermal stimulated VO2. The coding metasurface also realizes the switching between two near-field focal points at 1.1 THz for the same coding sequence. Based on the effect of VO2 on the phase, this coding metasurface provides a new way to adjust and control the THz wave flexibly, and will have a great application prospect in THz transmission, imaging and communication.
-
Keywords:
- vanadium dioxide /
- terahertz /
- coding metasurface
[1] 姚建铨 2010 重庆邮电大学学报 22 703
Google Scholar
Yao J Q 2010 J. Chongqing Univ. Posts Telecommun. 22 703
Google Scholar
[2] 刘盛纲 2006 中国基础科学 1 7
Google Scholar
Liu S G 2006 Chin. Basic Sci. 1 7
Google Scholar
[3] 李晓楠, 周璐, 赵国忠 2019 68 238101
Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101
Google Scholar
[4] Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li Y, Li C Y, Gu A, Shi N C, Zhao K, Zhao H L, Zhang C L 2015 Sci. China Phys. Mech. 58 124202
Google Scholar
[5] Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684
Google Scholar
[6] Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301
Google Scholar
[7] Guillet J P, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Honninger I, Desbarats P, Mounaix P 2014 J. Infrared Milli. Terahz Waves 35 382
Google Scholar
[8] 陈实, 胡伟东 2017 无线电通信技术 43 01
Google Scholar
Chen S, Hu W D 2017 Radio Commun. Technol. 43 01
Google Scholar
[9] 姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣 2009 中国激光 36 2213
Google Scholar
Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chin. J. Las. 36 2213
Google Scholar
[10] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156
Google Scholar
[11] Exter M V, Fattinger C, Grischkowsky D 1989 Appl. Phys. Lett. 55 337
Google Scholar
[12] Sinyukov A M, Liu Z W, Hor Y L, Su K, Barat R B, Gary D E, Michalopoulou Z H, Zorych I, Federici J F, Zimdars D 2008 Opt. Lett. 33 1593
Google Scholar
[13] Yan F, Yu C, Park H, Parrott E P J, Pickwell-MacPherson E 2013 J. Infrared Milli. Terahz Waves 34 489
Google Scholar
[14] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
Google Scholar
[15] Mendis R, Nag A, Chen F, Mittleman D M 2010 Appl. Phys. Lett. 97 131106
Google Scholar
[16] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
Google Scholar
[17] Zhang H F, Zhang X Q, Xu Q, Tian C X, Wang Q, Xu Y H, Li Y F, Gu J Q, Tian Z, Ouyang C M, Zhang X X, Hu C, Han J G, Zhang W L 2018 Adv. Opt. Mater. 6 1700773
Google Scholar
[18] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军 2018 67 097801
Google Scholar
Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J 2018 Acta Phys. Sin. 67 097801
Google Scholar
[19] 周璐, 赵国忠, 李晓楠 2019 68 108701
Google Scholar
Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701
Google Scholar
[20] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[21] Nemati A, Wang Q, Hong M H, Teng J H 2018 Opto-Electron. Adv. 1 180009
Google Scholar
[22] Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885
Google Scholar
[23] Deng Z L, Jin M K, Ye X, Wang S, Shi T, Deng J H, Mao N B, Cao Y Y, Guan B O, Alu A, Li G X, Li X P 2020 Adv. Funct. Mater. 30 1910610
Google Scholar
[24] Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photonics Res. 6 443
Google Scholar
[25] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218
Google Scholar
[26] Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wan X, Tian Z, Tang W X, Cheng Q, Hang J G, Zhang W L, Cui T J 2016 Adv. Opt. Mater. 4 1965
Google Scholar
[27] Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746
Google Scholar
[28] Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582
Google Scholar
[29] Zhu Y H, Zhao Y, Holtz M, Fan Z Y, Bernussi A A 2012 J. Opt. Soc. Am. B 29 2373
Google Scholar
[30] Mandal P, Speck A, Ko C, Ramanathan S 2011 Opt. Lett. 36 1927
Google Scholar
[31] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345
Google Scholar
[32] Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443
Google Scholar
[33] Kocer H, Butun S, Banar B, Wang K, Tongay S, Wu J Q, Aydin K 2015 Appl. Phys. Lett. 106 161104
Google Scholar
-
图 1 1 bit编码超表面示意图 (a) 单元“0”的结构示意图; (b) 单元“1”的结构示意图; (c) 单元“0”和“1”的反射振幅; (d) 单元“0”和“1”的反射相位
Figure 1. Schematic diagram of 1 bit coding metasurface: (a) Schematic diagram of unit “0”; (b) schematic diagram of unit “1”; (c) reflection amplitude of units “0” and “1”; (d) reflection phase of units “0” and “1”.
图 2 1 bit编码超表面不同编码序列示意图 (a) 编码序列1010/1010; (b) 编码序列0101/1010; 在1.1 THz(c) 编码序列1010/1010的远场方向图; (d) 编码序列0101/1010的远场方向图
Figure 2. Schematic diagram of different coding sequences on coding metasurface: (a) Coding sequence 1010/1010; (b) coding sequence 0101/1010; At 1.1 THz (c) far-field pattern of coding sequence 1010/1010; (d) far-field pattern of coding sequence 0101/1010.
图 3 1 bit编码超表面示意图 (a) 单元“0”的结构示意图; (b) 单元“1”的结构示意图; (c) 单元“0”和“1”在二氧化钒不同态时的反射振幅; (d) 单元“0”和“1”在二氧化钒不同态时的反射相位
Figure 3. Schematic diagram of 1-bit coding metasurface: (a) Schematic diagram of unit “0”; (b) schematic diagram of unit “1”; (c) reflection amplitude of units “0” and “1” in different vanadium dioxide states; (d) reflection phase of units “0” and “1” in different vanadium dioxide states.
图 5 1 bit编码超表面示意图 (a) 单元“0”的结构示意图; (b) 单元“1”的结构示意图; (c) 单元“0”和“1”在二氧化钒不同态时的反射振幅; (d)单元“0”和“1”在二氧化钒不同态时的反射相位
Figure 5. Schematic diagram of 1 bit coding metasurface: (a) Schematic diagram of unit "0"; (b) schematic diagram of unit "1"; (c) reflection amplitude of units "0" and "1" in differ rent vanadium dioxide states; (d) reflection phase of units "0" and "1" in different vanadium dioxide states.
图 7 不同编码序列示意图 (a) 编码序列1010/1010; (b) 编码序列0000/1111; 在1.1 THz(c) 编码序列1010/1010的远场方向图; (d) 编码序列0000/1111的远场方向图
Figure 7. Schematic diagram of different coding sequences: (a) Coding sequence 1010/1010; (b) coding sequence 0000/1111; At 1.1 THz, (c) far-field pattern of coding sequence 1010/1010; (d) far-field pattern of coding sequence 0000/1111.
图 8 聚焦的编码和相位示意图 (a) 焦点(xf = 0 μm, yf = 0 μm, zf = 900 μm)的编码图; (b) 焦点(xf = 0 μm, yf = 0 μm, zf = 900 μm)的相位图; (c) 焦点(xf = 600 μm, yf = 600 μm, zf = 800 μm)的编码图; (d) 焦点(xf = 600 μm, yf = 600 μm, zf = 800 μm)的相位图
Figure 8. Coding and phase diagram of focus: (a) Coding diagram of focus (xf = 0 μm, yf = 0 μm, zf = 900 μm); (b) phase diagram of focus (xf = 0 μm, yf = 0 μm, zf = 900 μm); (c) coding diagram of focus (xf = 600 μm, yf = 600 μm, zf = 800 μm); (d) phase diagram of focus (xf = 600 μm, yf = 600 μm, zf = 800 μm).
图 9 整体结构和电场图 二氧化钒为金属态时 (a) 超表面结构; (b)在z = 900 μm平面的x方向的归一化电场的x分量图; (c)在z = 900 μm平面的y方向的归一化电场的x分量图. 二氧化钒为绝缘时 (d) 超表面结构; (e) 在z = 800 μm平面的x方向的归一化电场的x分量图; (f) 在z = 800 μm平面的y方向的归一化电场的x分量图
Figure 9. Overall structure and electric field diagram. When vanadium dioxide is metallic state: (a) Metasurface structure; (b) x component diagram of normalized electric field in X direction of z = 900 μm plane; (c) x component diagram of normalized electric field in Y direction of z = 900 μm plane. When vanadium dioxide is insulating state (d) metasurface structure; (E) x component diagram of normalized electric field in X direction of z = 800 μm plane; (f) x component diagram of normalized electric field in Y direction of z = 800 μm plane.
-
[1] 姚建铨 2010 重庆邮电大学学报 22 703
Google Scholar
Yao J Q 2010 J. Chongqing Univ. Posts Telecommun. 22 703
Google Scholar
[2] 刘盛纲 2006 中国基础科学 1 7
Google Scholar
Liu S G 2006 Chin. Basic Sci. 1 7
Google Scholar
[3] 李晓楠, 周璐, 赵国忠 2019 68 238101
Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101
Google Scholar
[4] Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li Y, Li C Y, Gu A, Shi N C, Zhao K, Zhao H L, Zhang C L 2015 Sci. China Phys. Mech. 58 124202
Google Scholar
[5] Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684
Google Scholar
[6] Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301
Google Scholar
[7] Guillet J P, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Honninger I, Desbarats P, Mounaix P 2014 J. Infrared Milli. Terahz Waves 35 382
Google Scholar
[8] 陈实, 胡伟东 2017 无线电通信技术 43 01
Google Scholar
Chen S, Hu W D 2017 Radio Commun. Technol. 43 01
Google Scholar
[9] 姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣 2009 中国激光 36 2213
Google Scholar
Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chin. J. Las. 36 2213
Google Scholar
[10] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156
Google Scholar
[11] Exter M V, Fattinger C, Grischkowsky D 1989 Appl. Phys. Lett. 55 337
Google Scholar
[12] Sinyukov A M, Liu Z W, Hor Y L, Su K, Barat R B, Gary D E, Michalopoulou Z H, Zorych I, Federici J F, Zimdars D 2008 Opt. Lett. 33 1593
Google Scholar
[13] Yan F, Yu C, Park H, Parrott E P J, Pickwell-MacPherson E 2013 J. Infrared Milli. Terahz Waves 34 489
Google Scholar
[14] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
Google Scholar
[15] Mendis R, Nag A, Chen F, Mittleman D M 2010 Appl. Phys. Lett. 97 131106
Google Scholar
[16] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
Google Scholar
[17] Zhang H F, Zhang X Q, Xu Q, Tian C X, Wang Q, Xu Y H, Li Y F, Gu J Q, Tian Z, Ouyang C M, Zhang X X, Hu C, Han J G, Zhang W L 2018 Adv. Opt. Mater. 6 1700773
Google Scholar
[18] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军 2018 67 097801
Google Scholar
Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J 2018 Acta Phys. Sin. 67 097801
Google Scholar
[19] 周璐, 赵国忠, 李晓楠 2019 68 108701
Google Scholar
Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701
Google Scholar
[20] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[21] Nemati A, Wang Q, Hong M H, Teng J H 2018 Opto-Electron. Adv. 1 180009
Google Scholar
[22] Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885
Google Scholar
[23] Deng Z L, Jin M K, Ye X, Wang S, Shi T, Deng J H, Mao N B, Cao Y Y, Guan B O, Alu A, Li G X, Li X P 2020 Adv. Funct. Mater. 30 1910610
Google Scholar
[24] Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photonics Res. 6 443
Google Scholar
[25] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218
Google Scholar
[26] Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wan X, Tian Z, Tang W X, Cheng Q, Hang J G, Zhang W L, Cui T J 2016 Adv. Opt. Mater. 4 1965
Google Scholar
[27] Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746
Google Scholar
[28] Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582
Google Scholar
[29] Zhu Y H, Zhao Y, Holtz M, Fan Z Y, Bernussi A A 2012 J. Opt. Soc. Am. B 29 2373
Google Scholar
[30] Mandal P, Speck A, Ko C, Ramanathan S 2011 Opt. Lett. 36 1927
Google Scholar
[31] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345
Google Scholar
[32] Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443
Google Scholar
[33] Kocer H, Butun S, Banar B, Wang K, Tongay S, Wu J Q, Aydin K 2015 Appl. Phys. Lett. 106 161104
Google Scholar
Catalog
Metrics
- Abstract views: 12069
- PDF Downloads: 499
- Cited By: 0