-
基于VO2的相变特性, 提出了仅用两种混合结构实现2-bit (四种状态)编码的太赫兹编码超表面. 结构单元中贯通的金属线可用作电压引线对单行阵列进行控制, 使得固定阵列结构能够呈现不同的状态编码, 实现对波束的动态调控. 此外, 采用MATLAB软件对编码超表面阵列天线进行了可视化设计, 通过对工作频率、波束偏转角度等参数的设置, 实现了对状态序列与辐射结果的预测. 该可视化系统不限于具体的结构单元, 对一切满足编码条件的阵列均具有普适性. 最后, 采用深度神经网络进行了逆向天线设计, 通过与模拟对比验证了其在波束偏转角度和单元排布的有效性. 本文为主动灵活调控太赫兹波提供了新途径, 在太赫兹成像、相控雷达、通信等领域具有潜在的应用价值.To realize the diversified applications of terahertz wave, a new method to realize 2-bit (4 states) coding metasurface with only two hybrid units is proposed, which combines the phase transition characteristics of VO2 and is different from the traditional metasurface. The metal wire threaded through the patch makes single-line control possible. The method of preparing the VO2 thin film and the voltage control mechanism make the design more practical. The highlight of this design is that the fixed structure array can encode different state sequences and then tune the reflected beam. On this basis, a visual design is carried out for the calculation of the coding metasurface array antenna by MATLAB. The state sequence and radiation results are predicted by actively setting the operating frequency, beam deflection angle, etc., so as to achieve active adjustment. The system does not limit the unit structure and is universal to all arrays that meet the coding conditions. In addition, a deep neural network is introduced into the array arrangement, and the structure sequence is predicted by algorithm training and verified by numerical calculation and full-wave simulation. The results show that the proposed method is effective in beam deflection angle and structure arrangement. This study presents a new way of actively and flexibly controlling terahertz waves, which has potential applications in terahertz imaging, phase-controlled radar, communication and other fields.
-
Keywords:
- terahertz /
- coding metasurface /
- tunable /
- beam steering
[1] 刘盛纲, 钟任斌 2009 电子科技大学报 38 481Google Scholar
Liu S G, Zhong R B 2009 J. Univ. Electron. Sci. Technol. China 38 481Google Scholar
[2] 梁培龙, 戴景民 2015 自动化技术与应用 34 1
Liang P L, Dai J M 2015 Tech. Autom. Appl. 34 1 (in Chinese)
[3] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar
[4] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. App. 3 e218Google Scholar
[5] Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624Google Scholar
[6] Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar
[7] Gao Y J, Xiong X, Wang Z, Chen F, Wang M 2020 Phys. Rev. X 10 031035Google Scholar
[8] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F 2015 Light Sci. Appl. 4 e324Google Scholar
[9] Xiao B, Zhang Y, Tong S, Yu J, Xiao L 2020 Opt. Express 28 7125Google Scholar
[10] Vasic B, Isi G, Beccherelli R, Zografopoulos D C 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar
[11] Wang Q, Rogers E T F, Gholipour B, Wang C M, Zheludev N I 2016 Nat. Photonics 10 60Google Scholar
[12] 沈仕远, 王元圣, 池瑶佳, 马新迎, 杨青慧, 陈智, 文岐业 2021 太赫兹科学与电子信息学报 19 6Google Scholar
Shen S Y, Wang Y S, Chi Y J, Ma X Y, Yang Q H, Chen Z, Wen Q Y 2021 J. Terahertz Sci. Electron. Inform. Technol. 19 6Google Scholar
[13] Yan D X, Meng M, Li J S, Li J N, Li X J 2020 Opt. Express 28 29843Google Scholar
[14] Liu K, Lee S, Yang S, Delaire O, Wu J Q 2018 Mater. Today 21 875Google Scholar
[15] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202Google Scholar
Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar
[16] Li J, Li J T, Zhang Y T, Li J N, Yang Y, Zhao H L, Zheng C L, Li J H, Huang J, Li F Y, Tang T T, Yao J Q 2020 Opt. Commun. 460 124986Google Scholar
[17] Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory Simul. 3 1900183Google Scholar
[18] Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar
[19] Pan W M, Li J S, Zhou C 2021 Opt. Mater. Express 11 1070Google Scholar
[20] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 69 228101Google Scholar
Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar
[21] Shabanpour J, Beyraghi S, Cheldavi A 2020 Sci. Rep. 10 8950Google Scholar
[22] Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lv B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar
[23] Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B 33 980Google Scholar
[24] Tak J, Kantemur A, Sharma Y, Xin H 2018 IEEE Antennas Wirel. Propag. Lett. 17 2008Google Scholar
[25] Silva C R, Martins S R 2013 Opt. Technol. Lett. 55 1864Google Scholar
[26] So S, Badloe T, Noh J, Bravo-Abad J, Rho J 2019 Nanophotonics 9 1041Google Scholar
[27] Prado D R, Lopez-Fernandez J A, Arrebola M, Goussetis G 2018 48th European Microwave Conference (EuMC) Madrid Septemper 23, 2018 1545
[28] Hou J J, Lin H, Xu W L, Tian Y Z, Wang Y, Shi X T, Deng F, Chen L J 2020 IEEE Access 8 211849Google Scholar
[29] Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar
[30] Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582Google Scholar
[31] Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar
[32] Shen X M 2003 The 13th Annual Conference of Electronic Countermeasures Branch of Chinese Society of Electronics Guilin October 1, 2003 p506 (in Chinese) [沈喜明 2003 中国电子学会电子对抗分会第十三届学术年会论文集. 桂林 第506页]
[33] Zeng H X 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[34] Ghorbani F, Beyraghi S, Shabanpour J, Oraizi H, Soleimani H, Soleimani M 2021 Sci. Rep. 11 7102Google Scholar
[35] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H 2018 Light Sci. Appl. 7 1Google Scholar
[36] Sharma Y, Zhang H H, Xin H 2020 IEEE Trans. Antennas Propag. 68 5658Google Scholar
-
图 1 编码单元A (a)和B (d)示意图(黄色为金属, 红色为VO2); VO2为金属态和绝缘态时编码单元A和B的(b), (e)反射幅度图及(c), (f)反射相位图; 在工作频率0.22 THz处, 编码单元A在(g)金属态和(h)绝缘态时电场分布; 编码单元B在(i)绝缘态和(j)金属态时电场分布
Fig. 1. Model of unit A (a) and B (d) (The yellow part is the metal and the red part is VO2). Magnitude (b), (e) and phase (c), (f) of reflection for unit A and B when VO2 is in metallic state and insulation state. At operating frequency of 0.22 THz, the electric field distribution of unit A in the (g) metallic and (h) insulating state; the electric field distribution of unit B in the (i) metallic and (j) insulating state.
图 3 单元阵列按照“ABAB······”周期排列, 预设角度不同时对应的状态序列的(a), (c)极坐标辐射图和(b), (d)直角坐标辐射图 (a), (b) 预设角度为15°; (c), (d)预设角度为30°. 图中标注出了实际主瓣波束偏转角度
Fig. 3. Under the condition of different deflection angle, (a), (c) polar radiation map and (b), (d) cartesian radiation map of corresponding coding sequence when the structure arrays are arranged alternately by “ABAB······” : (a), (b) The deflection angle is 15°; (c), (d) the deflection angle is 30°. The actual deflection angle of main lobe beam is marked in the figures.
图 4 CST仿真辐射结果 (a) 状态序列为“121232323434341212121232” , 主瓣波束偏转角为15°; (b) 状态序列为“123234121212343412123234” , 主瓣波束偏转角为30°
Fig. 4. CST simulation radiation: (a) State sequence of “121232323434341212121232”, the deflection angle of main lobe beam is 15°; (b) state sequence of “123234121212343412123234”, the deflection angle of main lobe beam is 30°.
图 6 MATLAB (a), (c), (e)和CST (b), (d), (f)对不同偏转角的辐射验证 (a), (b) 35°; (c), (d) 45°; (e), (f) 55°. 图中标注出了实际偏转角度
Fig. 6. Verification with different deflection angles by MATLAB (a), (c), (e) and CST (b), (d), (f): (a), (b) 35°; (c), (d) 45°; (e), (f) 55°. The actual deflection angle is marked in the figures.
表 1 单元A结构尺寸参数
Table 1. Geometric parameters of unit A.
参数 P l h g w t 尺寸/μm 300 165 36 65 45 45 表 2 单元B结构尺寸参数
Table 2. Geometric parameters of unit B.
参数 P l1 l2 w1 w2 b h d g 尺寸/μm 300 115 135 25 38 270 40 20 10 -
[1] 刘盛纲, 钟任斌 2009 电子科技大学报 38 481Google Scholar
Liu S G, Zhong R B 2009 J. Univ. Electron. Sci. Technol. China 38 481Google Scholar
[2] 梁培龙, 戴景民 2015 自动化技术与应用 34 1
Liang P L, Dai J M 2015 Tech. Autom. Appl. 34 1 (in Chinese)
[3] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar
[4] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. App. 3 e218Google Scholar
[5] Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624Google Scholar
[6] Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar
[7] Gao Y J, Xiong X, Wang Z, Chen F, Wang M 2020 Phys. Rev. X 10 031035Google Scholar
[8] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F 2015 Light Sci. Appl. 4 e324Google Scholar
[9] Xiao B, Zhang Y, Tong S, Yu J, Xiao L 2020 Opt. Express 28 7125Google Scholar
[10] Vasic B, Isi G, Beccherelli R, Zografopoulos D C 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar
[11] Wang Q, Rogers E T F, Gholipour B, Wang C M, Zheludev N I 2016 Nat. Photonics 10 60Google Scholar
[12] 沈仕远, 王元圣, 池瑶佳, 马新迎, 杨青慧, 陈智, 文岐业 2021 太赫兹科学与电子信息学报 19 6Google Scholar
Shen S Y, Wang Y S, Chi Y J, Ma X Y, Yang Q H, Chen Z, Wen Q Y 2021 J. Terahertz Sci. Electron. Inform. Technol. 19 6Google Scholar
[13] Yan D X, Meng M, Li J S, Li J N, Li X J 2020 Opt. Express 28 29843Google Scholar
[14] Liu K, Lee S, Yang S, Delaire O, Wu J Q 2018 Mater. Today 21 875Google Scholar
[15] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202Google Scholar
Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar
[16] Li J, Li J T, Zhang Y T, Li J N, Yang Y, Zhao H L, Zheng C L, Li J H, Huang J, Li F Y, Tang T T, Yao J Q 2020 Opt. Commun. 460 124986Google Scholar
[17] Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory Simul. 3 1900183Google Scholar
[18] Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar
[19] Pan W M, Li J S, Zhou C 2021 Opt. Mater. Express 11 1070Google Scholar
[20] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 69 228101Google Scholar
Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar
[21] Shabanpour J, Beyraghi S, Cheldavi A 2020 Sci. Rep. 10 8950Google Scholar
[22] Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lv B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar
[23] Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B 33 980Google Scholar
[24] Tak J, Kantemur A, Sharma Y, Xin H 2018 IEEE Antennas Wirel. Propag. Lett. 17 2008Google Scholar
[25] Silva C R, Martins S R 2013 Opt. Technol. Lett. 55 1864Google Scholar
[26] So S, Badloe T, Noh J, Bravo-Abad J, Rho J 2019 Nanophotonics 9 1041Google Scholar
[27] Prado D R, Lopez-Fernandez J A, Arrebola M, Goussetis G 2018 48th European Microwave Conference (EuMC) Madrid Septemper 23, 2018 1545
[28] Hou J J, Lin H, Xu W L, Tian Y Z, Wang Y, Shi X T, Deng F, Chen L J 2020 IEEE Access 8 211849Google Scholar
[29] Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar
[30] Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582Google Scholar
[31] Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar
[32] Shen X M 2003 The 13th Annual Conference of Electronic Countermeasures Branch of Chinese Society of Electronics Guilin October 1, 2003 p506 (in Chinese) [沈喜明 2003 中国电子学会电子对抗分会第十三届学术年会论文集. 桂林 第506页]
[33] Zeng H X 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[34] Ghorbani F, Beyraghi S, Shabanpour J, Oraizi H, Soleimani H, Soleimani M 2021 Sci. Rep. 11 7102Google Scholar
[35] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H 2018 Light Sci. Appl. 7 1Google Scholar
[36] Sharma Y, Zhang H H, Xin H 2020 IEEE Trans. Antennas Propag. 68 5658Google Scholar
计量
- 文章访问数: 4567
- PDF下载量: 99
- 被引次数: 0