Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds

Li Qiang Chen Shuo Liu Ke-Ke Lu Zhi-Qiang Hu Qin Feng Li-Ping Zhang Qing-Jie Wu Jin-Song Su Xian-Li Tang Xin-Feng

Citation:

Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds

Li Qiang, Chen Shuo, Liu Ke-Ke, Lu Zhi-Qiang, Hu Qin, Feng Li-Ping, Zhang Qing-Jie, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng
PDF
HTML
Get Citation
  • Grain size refinement is the vital stratagem for improving mechanical properties of Bi2Te3-based thermoelectric material. However, the donor-like effect induced by grain size refinement seriously deteriorates the thermoelectric properties especially near room temperature. Once the donor-like effect is generated, it is very difficult to eliminate the donor-like effect by the simple heat treatment process and other processes. In this study, the influences of particle size on the donor-like effect and thermoelectric properties are systematically studied for Bi2Te3-based compounds. As the particle size decreases, the donor-like effect is enhanced significantly. The oxygen-induced donor-like effect dramatically increases the carrier concentration from 3.36× 1019 cm–3 for 10 M sintered sample to 7.33×1019 cm–3 for 120 M sintered sample, which is largely beyond the optimal carrier concentration of 2.51×1019 cm–3 and seriously deteriorates the thermoelectric properties. However, when the particle size of the powder is 1–2 mm, the Seebeck coefficient of –195 μV/K and the carrier concentration of 3.36×1019 cm–3 near room temperature are achieved, which are similar to those of the ZM sample with the Seebeck coefficient of –203 μV/K and the carrier concentration of 2.51×1019 cm–3. The powders without the obvious donor-like effect can be used as the excellent raw material for powder metallurgy process. A maximum ZT value of 0.75 is achieved for the 18 M sintered sample. The excellent thermoelectric properties are expected to be obtained by enhancing the texture further. This study provides a new way to regulate and effectively suppress the generation of the donor-like effect, and provides an important guidance for the preparation of materials with excellent thermoelectric and mechanical properties by powder metallurgy process.
      Corresponding author: Su Xian-Li, suxianli@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52122108, 51972256), the National Key Research and Development Program of China (Grant No. 2018YFB0703600), and the Independent and innovative Project of Longzhong Laboratory in Hubei Province, China (Grant No. 2022ZZ-07).
    [1]

    Wang Y, Liu W D, Shi X L, Hong M, Wang L J, Li M, Wang H, Zou J, Chen Z G 2020 Chem. Eng. J. 391 123513Google Scholar

    [2]

    Deng R G, Su X L, Zheng Z, Liu W, Yan Y G, Zhang Q, Dravid V P, Uher C, Kanatzidis M G, Tang X F 2018 Sci. Adv. 4 5606Google Scholar

    [3]

    Liu W S, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z 2011 Adv. Energy Mater. 1 577Google Scholar

    [4]

    Sun M, Tang G W, Wang H F, Zhang T, Zhang P Y, Han B, Yang M, Zhang H, Chen Y C, Chen J, Chen D D, Gan J L, Qian Q, Yang Z M 2022 Adv. Mater. 34 2202942Google Scholar

    [5]

    Hu L P, Zhu T J, Liu X H, Zhao X B 2014 Adv. Funct. Mater. 24 5211Google Scholar

    [6]

    Tao Q R, Deng R G, Li J, Yan Y G, Su X L, Poudeu P F P, Tang X F 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Hu L P, Wu H J, Zhu T J, Fu C G, He J Q, Ying P J, Zhao X B 2015 Adv. Energy Mater. 5 1500411Google Scholar

    [8]

    Zhao L D, Zhang B P, Li J F, Zhang H L, Liu W S 2008 Solid State Sci. 10 651Google Scholar

    [9]

    Liu Y, Zhang Y, Lim K H, Ibáñez M, Ortega S, Li M, David J, Martí-Sánchez S, Ng K M, Arbiol J, Kovalenko M V, Cadavid D, Cabot A 2018 ACS Nano 12 7174Google Scholar

    [10]

    Jariwala B, Shah D V 2011 J. Cryst. Growth 318 1179Google Scholar

    [11]

    Tang X F, Li Z W, Liu W, Zhang Q J, Uher C 2022 Inter. Mater. 1 88Google Scholar

    [12]

    Tao Q R, Wu H J, Pan W F, Zhang Z K, Tang Y F, Wu Y T, Fan Y J, Chen Z Q, Wu J S, Su X L, Tang X F 2021 ACS Appl. Mater. Interfaces 13 60216Google Scholar

    [13]

    Zheng Y, Zhang Q, Su X L, Xie H, Shu S, Chen T, Tan G J, Yan Y G, Tang X F, Uher C, Snyder G J 2015 Adv. Energy Mater. 5 1401391Google Scholar

    [14]

    Zheng G, Su X L, Liang T, Lu Q B, Yan Y G, Uher C, Tang X F 2015 J. Mater. Chem. A 3 6603Google Scholar

    [15]

    Lavrentev M G, Osvenskii V B, Parkhomenko Y N, Pivovarov G I, Sorokin A I, Bulat L P, Kim H S, Witting I T, Snyder G J, Bublik V T, Tabachkova N Y 2016 APL Mater. 4 104807Google Scholar

    [16]

    Chen B, Li J Q, Wu M N, Hu L P, Liu F S, Ao W Q, Li Y, Xie H P, Zhang C H 2019 ACS Appl. Mater. Interfaces 11 45746Google Scholar

    [17]

    Zhang C, Geng X, Chen B, Li J, Meledin A, Hu L, Liu F, Shi J, Mayer J, Wuttig M, Cojocaru-Mirédin O, Yu Y 2021 Small 17 2104067Google Scholar

    [18]

    Deng R G, Su X L, Hao S, Zheng Z, Zhang M, Xie H Y, Liu W, Yan Y G, Wolverton C, Uher C, Kanatzidis M G, Tang X F 2018 Energy Environ. Sci 11 1520Google Scholar

    [19]

    Tao Q R, Meng F C, Zhang Z K, Cao Y, Tang Y F, Zhao J G, Su X L, Uher C, Tang X F 2021 Mater. Today Phys. 20 100472Google Scholar

    [20]

    訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰 2022 71 117101Google Scholar

    Zi P, Bai H, Wang C, Wu Y T, Ren P A, Tao Q R, Wu J S, Su X L, Tang X F 2022 Acta Phys. Sin. 71 117101Google Scholar

    [21]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [22]

    Zhang Z K, Tao Q R, Bai H, Tang H, Cao Y, Shi Y X, Wu J S, Su X L, Tang X F 2021 J. Eur. Ceram. Soc. 41 7703Google Scholar

    [23]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [24]

    Du B S, Lai X F, Liu Q L, Liu H T, Wu J, Liu J, Zhang Z H, Pei Y Z, Zhao H Z, Jian J K 2019 ACS Appl. Mater. Interfaces 11 31816Google Scholar

    [25]

    Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [26]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [27]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [28]

    Zhao L D, Hao S, Lo S H, Wu C I, Zhou X, Lee Y, Li H, Biswas K, Hogan T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2013 J. Am. Chem. Soc 135 7364Google Scholar

    [29]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [30]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106Google Scholar

    [31]

    Zhu T J, Hu L P, Zhao X B, He J 2016 Adv. Sci. 3 1600004Google Scholar

    [32]

    Hu L P, Liu X H, Xie H H, Shen J J, Zhu T J, Zhao X B 2012 Acta Mater. 60 4431Google Scholar

    [33]

    Zhang C, Fan X A, Hu J, Jiang C, Xiang Q, Li G, Li Y, He Z 2017 Adv. Eng. Mater. 19 1600696Google Scholar

    [34]

    Zhang Q, Gu B C, Wu Y H, Zhu T J, Fang T, Yang Y X, Liu J D, Ye B J, Zhao X B 2019 ACS Appl. Mater. Interfaces 11 41424Google Scholar

    [35]

    Liu X S, Xing T, Qiu P F, Deng T T, Li P, Li X W, Li X Y, Shi X 2023 J. Materiomics 9 345Google Scholar

    [36]

    Lin S S, Liao C N 2011 J. Appl. Phys 110 093707Google Scholar

    [37]

    Wang Y C, Shi Y G, Mei D Q, Chen Z C 2017 Appl. Energy 205 710Google Scholar

    [38]

    Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [39]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [40]

    Wu Y H, Yu Y, Zhang Q, Zhu T J, Zhai R S, Zhao X B 2019 Adv. Sci. 6 1901702Google Scholar

    [41]

    Zhu B, Liu X X, Wang Q, Qiu Y, Shu Z, Guo Z T, Tong Y, Cui J, Gu M, He J Q 2020 Energy Environ. Sci. 13 2106Google Scholar

    [42]

    任培安, 汪聪, 訾鹏, 陶奇睿, 苏贤礼, 唐新峰 2022 无机材料学报 37 1079Google Scholar

    Ren P A, Wang C, Zi P, Tao Q R, Su X L, Tang X F 2022 J. Inorg. Mater. 37 1079Google Scholar

    [43]

    胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健 2022 71 047101Google Scholar

    Hu W W, Sun J C, Zhang Y, Gong Y, Fan Y T, Tang X F, Tan G J 2022 Acta Phys. Sin. 71 047101Google Scholar

  • 图 1  (a) 不同粉体颗粒尺寸Bi2Te2.79Se0.21烧结样品的粉体XRD图谱; (b) 垂直于烧结压力方向的块体XRD图谱

    Figure 1.  (a) Powder XRD patterns of Bi2Te2.79Se0.21 samples sintered with different particle sizes of powders; (b) bulk XRD patterns of samples measured perpendicular to the pressing direction.

    图 2  (a), (b) 10 M样品沿着垂直和平行于烧结压力方向断裂截面的场发射扫描电子显微镜图像(FESEM); (c) 10 M样品抛光表面的背散射电子图像; (d)—(f) 图(c)中Bi-Te-Se元素的能谱面扫描图(EDS-Map)

    Figure 2.  (a), (b) Field emission scanning electron microscope images of fractured surfaces of the 10 M sample measured perpendicular to and parallel to the pressing direction; (c) backscattered electron images of polished surfaces of the 10 M sample; (d)–(f) EDS elemental mapping of Bi, Te, and Se of Fig. 2 (c).

    图 3  区熔锭体沿ab面方向和Bi2Te2.79Se0.21烧结样品沿着(a), (c), (e)垂直和(b), (d), (f)平行于压力方向的电输运性能与温度的关系曲线 (a), (b) 电导率; (c), (d) Seebeck系数; (e), (f) 功率因子

    Figure 3.  Temperature dependence of (a), (b) the electrical conductivity, (c), (d) Seebeck coefficient, and (e), (f) power factor for the zone melt (ZM) sample measured along the ab-plane and Bi2Te2.79Se0.21 sintered samples measured (a), (c), (e) perpendicular to and (b), (d), (f) parallel to the pressing direction, respectively.

    图 4  室温下Bi2Te2.79Se0.21烧结样品沿垂直于烧结压力方向的性质 (a)载流子浓度n和迁移率μ与颗粒尺寸的关系; (b)样品Seebeck系数与载流子浓度的关系曲线, 以及单抛带模型计算载流子有效质量

    Figure 4.  Properties for Bi2Te2.79Se0.21 sintered samples measured perpendicular to the pressing direction at room temperature: (a) The relationship of carrier concentration n and carrier mobility μ to the size of powder; (b) Seebeck coefficients as a function of the charge carrier concentration, where the solid lines are Pisarenko plots based on the single parabolic band model.

    图 5  区熔锭体沿着ab面方向和Bi2Te2.79Se0.21烧结样品沿着(a), (c), (e)垂直和(b), (d), (f)平行于烧结压力方向的热输运性能和热电优值与温度的关系曲线 (a), (b) 总热导率; (c), (d) 晶格热导率; (e), (f) 无量纲热电优值ZT

    Figure 5.  Temperature dependence of (a), (b) total thermal conductivity, (c), (d) lattice thermal conductivity, and (e), (f) dimensionless thermoelectric figure of merit ZT value for the ZM sample measured along the ab-plane and Bi2Te2.79Se0.21 sintered samples measured (a), (c), (e) perpendicular to and (b), (d), (f) parallel to the pressing direction, respectively.

    表 1  烧结块体样品垂直于压力方向的取向因子、密度和致密度

    Table 1.  Orientation factor F value, density, and relative density of sintered bulk samples perpendicular to the pressing direction.

    目数
    10 M18 M35 M50 M65 M120 M
    F(0 0 l)0.430.360.390.300.250.20
    密度6.987.067.137.277.427.69
    致密度/%89.290.391.293.094.998.3
    DownLoad: CSV
    Baidu
  • [1]

    Wang Y, Liu W D, Shi X L, Hong M, Wang L J, Li M, Wang H, Zou J, Chen Z G 2020 Chem. Eng. J. 391 123513Google Scholar

    [2]

    Deng R G, Su X L, Zheng Z, Liu W, Yan Y G, Zhang Q, Dravid V P, Uher C, Kanatzidis M G, Tang X F 2018 Sci. Adv. 4 5606Google Scholar

    [3]

    Liu W S, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z 2011 Adv. Energy Mater. 1 577Google Scholar

    [4]

    Sun M, Tang G W, Wang H F, Zhang T, Zhang P Y, Han B, Yang M, Zhang H, Chen Y C, Chen J, Chen D D, Gan J L, Qian Q, Yang Z M 2022 Adv. Mater. 34 2202942Google Scholar

    [5]

    Hu L P, Zhu T J, Liu X H, Zhao X B 2014 Adv. Funct. Mater. 24 5211Google Scholar

    [6]

    Tao Q R, Deng R G, Li J, Yan Y G, Su X L, Poudeu P F P, Tang X F 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Hu L P, Wu H J, Zhu T J, Fu C G, He J Q, Ying P J, Zhao X B 2015 Adv. Energy Mater. 5 1500411Google Scholar

    [8]

    Zhao L D, Zhang B P, Li J F, Zhang H L, Liu W S 2008 Solid State Sci. 10 651Google Scholar

    [9]

    Liu Y, Zhang Y, Lim K H, Ibáñez M, Ortega S, Li M, David J, Martí-Sánchez S, Ng K M, Arbiol J, Kovalenko M V, Cadavid D, Cabot A 2018 ACS Nano 12 7174Google Scholar

    [10]

    Jariwala B, Shah D V 2011 J. Cryst. Growth 318 1179Google Scholar

    [11]

    Tang X F, Li Z W, Liu W, Zhang Q J, Uher C 2022 Inter. Mater. 1 88Google Scholar

    [12]

    Tao Q R, Wu H J, Pan W F, Zhang Z K, Tang Y F, Wu Y T, Fan Y J, Chen Z Q, Wu J S, Su X L, Tang X F 2021 ACS Appl. Mater. Interfaces 13 60216Google Scholar

    [13]

    Zheng Y, Zhang Q, Su X L, Xie H, Shu S, Chen T, Tan G J, Yan Y G, Tang X F, Uher C, Snyder G J 2015 Adv. Energy Mater. 5 1401391Google Scholar

    [14]

    Zheng G, Su X L, Liang T, Lu Q B, Yan Y G, Uher C, Tang X F 2015 J. Mater. Chem. A 3 6603Google Scholar

    [15]

    Lavrentev M G, Osvenskii V B, Parkhomenko Y N, Pivovarov G I, Sorokin A I, Bulat L P, Kim H S, Witting I T, Snyder G J, Bublik V T, Tabachkova N Y 2016 APL Mater. 4 104807Google Scholar

    [16]

    Chen B, Li J Q, Wu M N, Hu L P, Liu F S, Ao W Q, Li Y, Xie H P, Zhang C H 2019 ACS Appl. Mater. Interfaces 11 45746Google Scholar

    [17]

    Zhang C, Geng X, Chen B, Li J, Meledin A, Hu L, Liu F, Shi J, Mayer J, Wuttig M, Cojocaru-Mirédin O, Yu Y 2021 Small 17 2104067Google Scholar

    [18]

    Deng R G, Su X L, Hao S, Zheng Z, Zhang M, Xie H Y, Liu W, Yan Y G, Wolverton C, Uher C, Kanatzidis M G, Tang X F 2018 Energy Environ. Sci 11 1520Google Scholar

    [19]

    Tao Q R, Meng F C, Zhang Z K, Cao Y, Tang Y F, Zhao J G, Su X L, Uher C, Tang X F 2021 Mater. Today Phys. 20 100472Google Scholar

    [20]

    訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰 2022 71 117101Google Scholar

    Zi P, Bai H, Wang C, Wu Y T, Ren P A, Tao Q R, Wu J S, Su X L, Tang X F 2022 Acta Phys. Sin. 71 117101Google Scholar

    [21]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [22]

    Zhang Z K, Tao Q R, Bai H, Tang H, Cao Y, Shi Y X, Wu J S, Su X L, Tang X F 2021 J. Eur. Ceram. Soc. 41 7703Google Scholar

    [23]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [24]

    Du B S, Lai X F, Liu Q L, Liu H T, Wu J, Liu J, Zhang Z H, Pei Y Z, Zhao H Z, Jian J K 2019 ACS Appl. Mater. Interfaces 11 31816Google Scholar

    [25]

    Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [26]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [27]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [28]

    Zhao L D, Hao S, Lo S H, Wu C I, Zhou X, Lee Y, Li H, Biswas K, Hogan T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2013 J. Am. Chem. Soc 135 7364Google Scholar

    [29]

    Li J F, Liu W S, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152Google Scholar

    [30]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106Google Scholar

    [31]

    Zhu T J, Hu L P, Zhao X B, He J 2016 Adv. Sci. 3 1600004Google Scholar

    [32]

    Hu L P, Liu X H, Xie H H, Shen J J, Zhu T J, Zhao X B 2012 Acta Mater. 60 4431Google Scholar

    [33]

    Zhang C, Fan X A, Hu J, Jiang C, Xiang Q, Li G, Li Y, He Z 2017 Adv. Eng. Mater. 19 1600696Google Scholar

    [34]

    Zhang Q, Gu B C, Wu Y H, Zhu T J, Fang T, Yang Y X, Liu J D, Ye B J, Zhao X B 2019 ACS Appl. Mater. Interfaces 11 41424Google Scholar

    [35]

    Liu X S, Xing T, Qiu P F, Deng T T, Li P, Li X W, Li X Y, Shi X 2023 J. Materiomics 9 345Google Scholar

    [36]

    Lin S S, Liao C N 2011 J. Appl. Phys 110 093707Google Scholar

    [37]

    Wang Y C, Shi Y G, Mei D Q, Chen Z C 2017 Appl. Energy 205 710Google Scholar

    [38]

    Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [39]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [40]

    Wu Y H, Yu Y, Zhang Q, Zhu T J, Zhai R S, Zhao X B 2019 Adv. Sci. 6 1901702Google Scholar

    [41]

    Zhu B, Liu X X, Wang Q, Qiu Y, Shu Z, Guo Z T, Tong Y, Cui J, Gu M, He J Q 2020 Energy Environ. Sci. 13 2106Google Scholar

    [42]

    任培安, 汪聪, 訾鹏, 陶奇睿, 苏贤礼, 唐新峰 2022 无机材料学报 37 1079Google Scholar

    Ren P A, Wang C, Zi P, Tao Q R, Su X L, Tang X F 2022 J. Inorg. Mater. 37 1079Google Scholar

    [43]

    胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健 2022 71 047101Google Scholar

    Hu W W, Sun J C, Zhang Y, Gong Y, Fan Y T, Tang X F, Tan G J 2022 Acta Phys. Sin. 71 047101Google Scholar

  • [1] Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng. Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds. Acta Physica Sinica, 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [2] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [3] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [5] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [6] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [7] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [8] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [9] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [11] Jiang Ming-Bo, Wu Zhi-Xiong, Zhou Min, Huang Rong-Jin, Li Lai-Feng. Cryogenic thermoelectric properties of BiTe-based alloys and cryo-energy power generation. Acta Physica Sinica, 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [12] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [13] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [14] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [15] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Zhang Hai-Long, Zhao Li-Dong. Coupling scattering effect between grain boundary and point defect on the thermoelectric transport process in Co1-xNixSb3-ySey. Acta Physica Sinica, 2008, 57(6): 3791-3797. doi: 10.7498/aps.57.3791
    [16] Preparation and thermoelectric properties of p-type Ag0.5(Pb8-xSnx)In0.5Te10 compounds. Acta Physica Sinica, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [17] Experimental study of wear resistance of nickel based WC composite coating prepared by flame spraying and remelting. Acta Physica Sinica, 2007, 56(12): 7320-7329. doi: 10.7498/aps.56.7320
    [18] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [19] Yu Bo-Lin, Qi Qiong, Tang Xin-Feng, Zhang Qing-Jie. Effect of grain size on thermoelectric properties of CoSb3 compound. Acta Physica Sinica, 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [20] Tang Xin-feng, Chen Li-Dong, T Goto, T Hiral, Yuan Run-Zhang. Thermoelectricpropertiesofn typeBayNixCo4-xSb1 2. Acta Physica Sinica, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
Metrics
  • Abstract views:  4373
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2023
  • Accepted Date:  12 March 2023
  • Available Online:  16 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回
Baidu
map