-
CuxAg1-xSbTe2 samples withx = 00.3 are prepared by a combined process of melt-quenching and spark plasma sintering (SPS). X-ray powder diffraction (XRD) analysis indicates that single phase samples with the NaCl-type structure are obtained for the Cu-doped samples before SPS treatment, whereas a small quantity of Ag2Te impurities coexist with the main cubic phase for the sample without Cu. According to our thermoanalysis and XRD results, the substitution of Cu for Ag can effectively prevent the precipitation of Ag2Te, but this also leads to the presence of a minor amorphous phase in the melt-quenched sample. The amorphous phase crystallizes into Sb7Te metastable phase at about 540 K, which finally transforms into the stable Sb2Te3 compound. After the SPS treatment of the melt-quenched sample, the sample withx=0.1 remains a single phase with the face-centered-cubic crystal structure, while Sb7Te and Sb2Te3 are precipitated as the second phases for the samples withx = 0.2 and 0.3, respectively. The electrical conductivity increases and the Seebeck coefficient decreases with the addition of Cu due to the existence of the second phase in the samples withx = 0.2 and 0.3. Accordingly, thermal conductivities also increase with the addition of Cu, leading to the reduced thermoelectric performance of thex= 0.2 and 0.3 samples. For the sample withx = 0.1, its power factor is comparable to that of the literature reported AgSbTe2 compound. As a result of so-called alloying effect, the phonon scattering effect is enhanced due to the partial replacement of Ag by Cu, leading to the reduced thermal conductivity of thex = 0.1 sample. Therefore, the Cu0.1Ag0.9SbTe2 sample exhibits the promising thermoelectric performance and a dimensionless thermoelectric figure of merit (ZT) value of 1 is achieved at 620 K.
-
Keywords:
- AgSbTe2 /
- phase stability /
- crystal structure /
- thermoelectric properties
[1] Tritt T M 1999 Science 283 804
[2] Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)
[3] Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178
[4] Vining C B 2008 Nat. Mater. 7 765
[5] Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708
[6] Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057
[7] Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855
[8] Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081
[9] Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712
[10] Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712
[11] Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873
[12] Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120
[13] Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203
[14] Sales B C 2002 Science 295 1248
[15] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043
[16] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168
[17] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597
[18] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818
[19] Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403
[20] Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450
[21] Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901
[22] Hockings E F 1959 J. Phys. Chem. Solids 10 341
[23] Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415
[24] Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104
[25] Majer R G 1963 Z. Metall. 54 311
[26] Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730
[27] Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299
[28] McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785
[29] Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203
[30] Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707
[31] Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202
[32] Petzow G, Effenberg G 1988 Ternary Alloys 2 554
[33] Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747
[34] Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039
[35] Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352
[36] Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184
[37] Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106
[38] Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521
[39] Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249
-
[1] Tritt T M 1999 Science 283 804
[2] Rowe D M 2005 CRC Handbook of Thermoelectric Materials (New York: CRC Press)
[3] Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178
[4] Vining C B 2008 Nat. Mater. 7 765
[5] Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D 2006 J. Appl. Phys. 99 023708
[6] Kim J H, Okamoto N L, Kishida K, Tanaka K, Inui H 2006 Acta Mater. 54 2057
[7] Nolas G S, Kaeser M, Littleton R T, Tritt T M 2000 Appl. Phys. Lett. 77 1855
[8] Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081
[9] Tanga X, Zhang Q, Chen L, Goto T, Hirai T 2005 J. Appl. Phys. 97 093712
[10] Puyet M, Dauscher A, Lenoir B, Dehmas M, Stiewe C, M黮ler E, Hejtmanek J 2005 J. Appl. Phys. 97 083712
[11] Brown S R, Kauzlarich S M, Gascoin F, Snyder G J 2006 Chem. Mater. 18 1873
[12] Fisher I R, Bud'ko S L, Song C, Canfield P C, Ozawa T C, Kauzlarich S M 2000 Phys. Rev. Lett. 85 1120
[13] Akrap A, Barišic N, Forro L, Mandrus D, Sales B C 2007 Phys. Rev. B 76 085203
[14] Sales B C 2002 Science 295 1248
[15] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z 2007 Adv. Mater. 19 1043
[16] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2007 Nature 451 168
[17] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597
[18] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C 2004 Science 303 818
[19] Bilc D, Mahanti S D, Quarez E, Hsu K F, Pcionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403
[20] Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450
[21] Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901
[22] Hockings E F 1959 J. Phys. Chem. Solids 10 341
[23] Ma H A, Su T C, Zhu P W, Guo J G, Jia X P 2008 J. Alloys Compd. 454 415
[24] Wang H, Li J F, Nan C W, Zhou M 2006 Appl. Phys. Lett. 88 092104
[25] Majer R G 1963 Z. Metall. 54 311
[26] Marin R M, Brun G, Tedenac J C 1985 J. Mater. Sci. 20 730
[27] Matsushita H, Hagiwara E, Katsui A 2004 J. Mater. Sci. 39 6299
[28] McHugh J P, Tiller W A, Haszkko S E, Wernick J H 1961 J. Appl. Phys. 32 1785
[29] Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M 2008 Phys. Rev. B 77 245203
[30] Yang S H, Zhu T J, Sun T, He J, Zhang S N, Zhao X B 2008 Nanotechnology 9 245707
[31] Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202
[32] Petzow G, Effenberg G 1988 Ternary Alloys 2 554
[33] Ayralmarin R M, Brun G, Maurin M, Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747
[34] Du L B, Li H, Tang X F 2011 J. Alloys Compd. 509 2039
[35] Zhang S N, Jing G Y, Zhu T J, Zhao X B, Yang S H 2011 Int. J. Min. Met. Mater. 18 352
[36] Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184
[37] Wang H, Li J F, Zou M M, Sui T 2008 Appl. Phys. Lett. 93 202106
[38] Du B L, Han L, Xu J J, Tang X F, Uher C 2010 Chem. Mater. 22 5521
[39] Du B, Xu J, Zhang W, Tang X 2011 J. Electron. Mater. 40 1249
Catalog
Metrics
- Abstract views: 8489
- PDF Downloads: 1012
- Cited By: 0