搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p型BixSb2-xTe3-ySey基材料低温热电性能研究

钟文龙 李珺杰 刘可可 郜顺奇 吴明轩 李貌 苏贤礼 张清杰 唐新峰

引用本文:
Citation:

p型BixSb2-xTe3-ySey基材料低温热电性能研究

钟文龙, 李珺杰, 刘可可, 郜顺奇, 吴明轩, 李貌, 苏贤礼, 张清杰, 唐新峰

Low-Temperature Thermoelectric Properties of p-Type BixSb2-xTe3-ySey-Based Materials

ZHONG Wenlong, LI Junjie, LIU Keke, GAO Shunqi, WU Mingxuan, LI Mao, SU Xianli, ZHANG Qingjie, TANG Xinfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • Bi2Te3基化合物是目前唯一实现商业化应用的热电材料,但对其研究大多都集中于室温及以上温区,针对室温以下的低温区研究较少。本工作系统地研究了Bi/Sb相对含量调控和Se固溶对BixSb2-xTe3和Bi0.4Sb1.6Te3-ySey化合物在低温区电热输运性能的影响规律。在BixSb2-xTe3体系中,固溶Bi2Te3减小了材料的带隙,并降低了SbTe反位缺陷的浓度,使材料的峰值ZT温度向低温区偏移,但显著增强的载流子点缺陷散射,导致材料的载流子迁移率和电传输性能劣化,功率因子从Bi0.4Sb1.6Te3的4.58 mW/(m·K2)下降至Bi0.58Sb1.42Te3的1.12 mW/(m·K2)。为了进一步提升材料低温区热电性能,选取Bi0.4Sb1.6Te3为基体,在Te位固溶Se,Se的固溶使SeTe+BiSb的缺陷形成能更低,抑制了反位缺陷SbTe的产生,降低了材料的载流子浓度。少量Se固溶使材料能保持优异的电传输性能同时,显著增强了点缺陷声子散射,降低材料的晶格热导率,在宽温区范围提升了材料的热电性能。Bi0.4Sb1.6Te3材料在220 K时,ZT值为0.80,在350 K时ZT峰值为1.17,少量Se固溶Bi0.4Sb1.6Te2.97Se0.03样品在220 K时ZT值增加至0.93。在350 K时ZT峰值达到1.31,相比分别提升了约16%和12%。该研究为BiSbTe基热电材料低温区热电性能提升提供了重要的指导,对BiSbTe基热电材料低温区的应用具有重要意义。
    Bi2Te3-based compounds are the only commercially available thermoelectric materials, yet their low-temperature performance below 300 K remains underdeveloped. This study systematically explores the effects of Bi/Sb ratio modulation and Se substitution on the electrical and thermal transport properties of BixSb2-xTe3 and Bi0.4Sb1.6Te3-ySey materials. The research aims to optimize their thermoelectric performance in cryogenic regions through combined bandgap tuning and defect engineering. Materials were synthesized using a melt-quenching and spark plasma sintering process, followed by phase analysis via X-ray diffraction and microstructural characterization by electron probe microanalysis. First-principles calculations and Hall effect measurements were employed to investigate defect formation mechanisms and carrier transport behavior. In the BixSb2-xTe3 system, increasing Bi content reduced the bandgap from 0.168 eV for Bi0.4Sb1.6Te3 to 0.113 eV for Bi0.58Sb1.42Te3, shifting the peak ZT temperature to lower ranges. However, enhanced alloy scattering degraded carrier mobility from 332 to 109 cm2/(V·s) and power factor from 4.58 to 1.12 mW/(m·K2). To address this, Se was substituted into the Te lattice of Bi0.4Sb1.6Te3. First-principles calculations revealed that Se substitution reduced the formation energy of SeTe + BiSb complexes, effectively suppressing SbTe antisite defects. This resulted in a carrier concentration decrease from 3.32×1019 to 2.64×1019 cm-3 while maintaining high mobility at 279 cm2/(V·s). Concurrently, Se-induced point defects enhanced phonon scattering, lowering lattice thermal conductivity by 17 % from 0.46 to 0.38 W/(m·K). Bi0.4Sb1.6Te2.97Se0.03 sample achieved a ZT value of 0.93 at 220 K, representing a 16 % improvement over the pristine Bi0.4Sb1.6Te3 sample with a ZT value of 0.80. The peak ZT increased from 1.17 to 1.31 at 350 K, demonstrating a 12 % enhancement. These improvements arise from the synergistic effects of band engineering, where flattened valence band edges increased effective mass, and defect engineering, which suppressed antisite defects and strengthened phonon scattering. This work provides a dual optimization strategy for BiSbTe-based materials, balancing bandgap reduction with defect control to improve cryogenic performance. The findings are particularly relevant for applications in infrared detectors and multistage thermoelectric cooling systems.
  • [1]

    Han Y N, Zhang A K 2022 Sci. Rep. 12 2349

    [2]

    Tong X, Qiu J, Li J P, Xie K Y, Chen J Y, Huai Y, Li S F, Huang Y B, Dong W 2024Cryogenics 143 103929

    [3]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021Science 373 556

    [4]

    Rogalski A, Martyniuk P, Kopytko M, Hu W D 2021Appl. Sci. 11 501

    [5]

    Tang J, Ni H, Peng R L, Wang N, Zuo L 2023J. Power. Sources. 562 232785

    [6]

    Sun J C, Zhang Y, Fan Y T, Tang X F, Tan G J 2022Chem. Eng. J. 431 133699

    [7]

    Peng G Y, Hu L, Qu W B, Zhang C L, Li S R, Liu Z Y, Liu J C, Guo S W, Xiao Y, Gao Z B, Zhang Z, Zhang Y, Wu H J, Pennycook S J, Sun J, Ding X D 2023Interdiscip. Mater. 2 30

    [8]

    Huang Y L, Lyu T, Zeng M T, Wang M R, Yu Y, Zhang C H, Liu F S, Hong M, Hu L P 2024Interdiscip. Mater. 3 607

    [9]

    Hu C L, Xia K Y, Fu C G, Zhao X B, Zhu T J 2022Energy Environ. Sci. 15 1406

    [10]

    Zhang Y, Sun J C, Shuai J, Tang X F, Tan G J 2021Mater. Today Phys. 19 100405

    [11]

    Liu Z T, Hong T, Xu L Q, Wang S N, Gao X, Chang C, Ding X D, Xiao Y, Zhao L D 2023Interdiscip. Mater. 2 161

    [12]

    Choi S, Han U, Cho H, Lee H 2018Appl. Therm. Eng. 132 560

    [13]

    Reddy B V K, Barry M, Li J, Chyu M K 2014Energy Conv. Manag. 77 458

    [14]

    Yang D W, Xing Y B, Wang J, Hu K, Xiao Y N, Tang K C, Lyu J N, Li J H, Liu Y T, Zhou P, Yu Y, Yan Y G, Tang X F 2024Interdiscip. Mater. 3 326

    [15]

    Feng J H, Li J, Liu R H 2024Nano Energy 126 109651

    [16]

    Lyu J N, Yang D W, Liu Y T, Li J H, Zhang Z N, Li Z M, Liu M Y, Liu W, Ren Z G, Liu H J, Wu J S, Tang X F, Yan Y G 2024ACS Appl. Mater. Interfaces. 16 16505

    [17]

    Mao J, Chen G, Ren Z F 2021Nat. Mater. 20 454

    [18]

    Luo T T, Wang S Y, Li H, Tang X F 2013Intermetallics 32 96

    [19]

    Chen Z, Zhou M, Huang R J, Song C M, Zhou Y, Li L F 2012J. Alloy. Compd. 511 85

    [20]

    Combe E, Funahashi R, Takeuchi T, Barbier T, Yubuta K 2017J. Alloy. Compd. 692 563

    [21]

    Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000Science 287 1024

    [22]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111

    [23]

    Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024Acta Phys. Sin. 73 097101(in Chinese) [李睿英,罗婷婷,李貌,陈硕,鄢永高,吴劲松,苏贤礼,张清杰,唐新峰2024 73 097101]

    [24]

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023Acta Phys. Sin. 72 097101(in Chinese) [李强,陈硕,刘可可,鲁志强,胡芹,冯丽萍,张清杰,吴劲松,苏贤礼,唐新峰2023 72 097101]

    [25]

    Chen S, Luo T T, Yang Z, Zhong S L, Su X L, Yan Y G, Wu J S, Poudeu P F, Zhang Q J, Tang X F 2024Mater. Today Phys. 46 101524

    [26]

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 381311(in Chinese) [鲁志强,刘可可,李强,胡芹,冯丽萍,张清杰,吴劲松,苏贤礼,唐新峰2023无机材料学报38 1331]

    [27]

    Goldsmid H J, Sharp J W 1999 J. Electro. Mater. 28 869

    [28]

    Yang J, Morelli D T, Meisner G, Chen W, Dyck J, Uher C 2002Phys. Rev. B. 65 094115

    [29]

    Wu G, Zhang Q, Fu Y T, Tan X J, Noudem J G, Zhang Z W, Cui C, Sun P, Hu H Y, Wu J H, Liu G Q, Jiang J 2023Adv. Funct. Mater. 33 2305686

    [30]

    Lee K H, Kim S I, Lim J C, Cho J Y, Yang H, Kim H S 2022Adv. Funct. Mater. 32 2203852

    [31]

    Xu B, Xia Q, Ma S S, Zhang J, Wang Y S, Li J F, Gu Z H, Yi L 2022FlatChem 34 100394

    [32]

    Saberi Y, Sajjadi S A 2022J. Alloy. Compd. 904 163918

  • [1] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能.  , doi: 10.7498/aps.73.20240098
    [2] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究.  , doi: 10.7498/aps.72.20230791
    [3] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , doi: 10.7498/aps.72.20230231
    [4] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能.  , doi: 10.7498/aps.71.20221247
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , doi: 10.7498/aps.71.20211843
    [6] 唐昊, 白辉, 吕嘉南, 华思恒, 鄢永高, 杨东旺, 吴劲松, 苏贤礼, 唐新峰. 表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能.  , doi: 10.7498/aps.71.20220549
    [7] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长.  , doi: 10.7498/aps.70.20211090
    [8] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , doi: 10.7498/aps.70.20211843
    [9] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器.  , doi: 10.7498/aps.68.20190281
    [10] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控.  , doi: 10.7498/aps.66.218103
    [11] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究.  , doi: 10.7498/aps.64.047201
    [12] 肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云. 能带工程对射频功率SiGe异质结双极晶体管热性能的改善.  , doi: 10.7498/aps.60.044402
    [13] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能.  , doi: 10.7498/aps.59.8927
    [14] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究.  , doi: 10.7498/aps.59.7314
    [15] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析.  , doi: 10.7498/aps.58.1212
    [16] 刘延辉, 李静波, 梁敬魁, 骆 军, 纪丽娜, 张继业, 饶光辉. La0.1Bi0.9-xEuxFeO3化合物的结构与性能研究.  , doi: 10.7498/aps.57.6476
    [17] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能.  , doi: 10.7498/aps.56.7309
    [18] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究.  , doi: 10.7498/aps.55.4843
    [19] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响.  , doi: 10.7498/aps.55.4849
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  94
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-13

/

返回文章
返回
Baidu
map