-
The single phase n-type (Bi0.85Sb0.15)2(Te1-xSex)3(x=0.15, 0.17, 0.19, 0.21)compounds have been synthesized by melt-spinning combined with subsequent spark plasma sintering technique, and the microstructures and thermoelectric transport properties of the bulk materials have been systematically investigated. The results of field emitted scanning electron microscopy images show that the bulk materials possess refined crystalline and a large number of layered structures with the sizes from 10 nm to 100 nm, and their differences in composition and phase are detected neither from the back scattering image nor from element face distributing images of polishing surface. With the increase of content of selenium, the electrical conductivity and the thermal conductivity increase but the Seebeck coefficient decreases. Comparing with the traditional zone melted material, the samples with higher selenium content possesse higher thermoelectric optimum value ZT after 420 K and the highest ZT of the sample (Bi0.85Sb0.15)2(Te0.83Se0.17)3 can reach 0.96 at 360 K, whose ZT increases by 48% at 500 K correspondingly. In addition, the temperature of the peak ZT can be adjusted by varying the content of selenium, which is meaningful for the design and the fabrication of multi-scale or grade thermoelectric device.
-
Keywords:
- melt spinning /
- (Bi0.85Sb0.15)2(Te1-xSex)3 compounds /
- thermoelectric properties /
- phonon scattering
[1] Jiang J, Xu G J, Cui P, Chen L D 2006 Acta Phys. Sin. 55 4849 (in Chinese) [蒋 俊、 许高杰、 崔 平、 陈立东 2006 55 4849]
[2] Lan Y C, Minnich M J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357
[3] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[4] Rowe D M 1995 CRC Handbook of Thermoelectrics (New York: CRC Press) chap 27
[5] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[6] Nolas G S, Goldsmid H J 2002 Phys. Stat. Sol. A 194 271
[7] Li C D, Tian X L, Chen X C, Ilinsky A G, Shi L K 2005 J. Mater. Sci. Technol. 21 135
[8] Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111
[9] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634
[10] Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106
[11] Ovsyannikov S V, Shchennikov V V, Vorontsov G V, Manakov A Y, Likhacheva A Y, Kulbachinskii V A 2008 J . Appl. Phys. 104 053713
[12] Chen Z C, Suzuki K, Miura S, Nishimura K, Ikeda K 2008 Mater. Sci. Eng. A 500 70
[13] Tang X F, Xie W J, Li H, Zhang Q J 2007 Appl. Phys. Lett. 90 012102
[14] Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 J . Appl. Phys. 105 113713
[15] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2001 50 1560] 〖16] Cao W Q, Yan Y G, Tang X F 2010 Acta Phys. Sin. 59 630 (in Chinese) [曹卫强、 鄢永高、 唐新峰 2010 59 630 ]
[16] Tkatch V I, Limanovskii A I, Denisenko S N, Rassolov S G 2002 Mater. Sci. Eng. A 323 91
[17] Liao C L, Wu L C 2009 Appl. Phys. Lett. 95 052112
[18] Sootsman J R, Chung D Y, Kanatzidis G K 2009 Angew. Chem. Int. Ed. 48 8616
[19] Snyder G F, Toberer E S 2008 Nat. Mater. 7 105
[20] Pichanusakorn P, Bandaru 2010 Mater. Sci. Eng. R 67 19
[21] Jiang J 2005 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramic, Chinese Academy of Sciences) (in Chinese) [蒋 俊 2005 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)]
[22] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2000 49 1120]
-
[1] Jiang J, Xu G J, Cui P, Chen L D 2006 Acta Phys. Sin. 55 4849 (in Chinese) [蒋 俊、 许高杰、 崔 平、 陈立东 2006 55 4849]
[2] Lan Y C, Minnich M J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357
[3] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[4] Rowe D M 1995 CRC Handbook of Thermoelectrics (New York: CRC Press) chap 27
[5] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[6] Nolas G S, Goldsmid H J 2002 Phys. Stat. Sol. A 194 271
[7] Li C D, Tian X L, Chen X C, Ilinsky A G, Shi L K 2005 J. Mater. Sci. Technol. 21 135
[8] Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111
[9] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634
[10] Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106
[11] Ovsyannikov S V, Shchennikov V V, Vorontsov G V, Manakov A Y, Likhacheva A Y, Kulbachinskii V A 2008 J . Appl. Phys. 104 053713
[12] Chen Z C, Suzuki K, Miura S, Nishimura K, Ikeda K 2008 Mater. Sci. Eng. A 500 70
[13] Tang X F, Xie W J, Li H, Zhang Q J 2007 Appl. Phys. Lett. 90 012102
[14] Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 J . Appl. Phys. 105 113713
[15] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2001 50 1560] 〖16] Cao W Q, Yan Y G, Tang X F 2010 Acta Phys. Sin. 59 630 (in Chinese) [曹卫强、 鄢永高、 唐新峰 2010 59 630 ]
[16] Tkatch V I, Limanovskii A I, Denisenko S N, Rassolov S G 2002 Mater. Sci. Eng. A 323 91
[17] Liao C L, Wu L C 2009 Appl. Phys. Lett. 95 052112
[18] Sootsman J R, Chung D Y, Kanatzidis G K 2009 Angew. Chem. Int. Ed. 48 8616
[19] Snyder G F, Toberer E S 2008 Nat. Mater. 7 105
[20] Pichanusakorn P, Bandaru 2010 Mater. Sci. Eng. R 67 19
[21] Jiang J 2005 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramic, Chinese Academy of Sciences) (in Chinese) [蒋 俊 2005 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)]
[22] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2000 49 1120]
Catalog
Metrics
- Abstract views: 9038
- PDF Downloads: 848
- Cited By: 0