Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds

Zi Peng Bai Hui Wang Cong Wu Yu-Tian Ren Pei-An Tao Qi-Rui Wu Jin-Song Su Xian-Li Tang Xin-Feng

Citation:

Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds

Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng
cstr: 32037.14.aps.71.20220179
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this study, we find new AgyIn3.33–y/3Se5 compounds in Ag-In-Se system by static diffusion method combined with common X-ray diffraction and backscattering electron analysis. The crystal structure belongs to the trilateral system with the P3m1 space group, which features a two-dimensional layered structure. The unit cell is composed of 9-atom quantum layers arranged in the sequence of Se1-In1-Se2-In2-Se3-Ag/In3-Se4-In4-Se5, and in-between these layers are bonded by the weak van der Waals force. The sintered bulk samples show highly anisotropic transport properties and have an ultra-low lattice thermal conductivity along the direction parallel to sintering pressure about 0.15 W·m–1·K–1 at 873 K. The intrinsically ultra-low lattice thermal conductivity mainly comes from low phonon velocity and the strong coupling between low frequency optical phonon and acoustic phonons. The AgyIn3.33–y/3Se5 compounds behave as an n-type conduction. The electrical conductivity is 4×104 S·m–1 and the Seebeck coefficient is –80 μV·K–1 at room temperature. Therefore, AgyIn3.33–y/3Se5 compounds show high electrical transport properties in a wide temperature range, and the power factor is around 5 μW·cm–1·K–2 in a range of 450–800 K. Owing to the ultra-low lattice thermal conductivity along the direction parallel to sintering pressure, Ag0.407In3.198Se5 reaches a maximum ZT of 1.01 at 873 K and an average ZT of 0.45 at 300–850 K. The discovery of AgyIn3.33–y/3Se5 expands the n-type copper based chalcogenide and lays an important foundation for the application of copper based chalcogenide.
      Corresponding author: Su Xian-Li, suxianli@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600) and the National Natural Science Foundation of China (Grant Nos. 52122108, 51972256).
    [1]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [2]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [5]

    Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, Liu W, Yan Y, Wolverton C, Uher C, Kanatzidis M G, Tang X 2018 Energy Environ. Sci. 11 1520Google Scholar

    [6]

    Tao Q, Deng R, Li J, Yan Y, Su X, Poudeu P F P, Tang X 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [8]

    Chen Z G, Shi X, Zhao L-D, Zou J 2018 Prog. Mater. Sci. 97 283Google Scholar

    [9]

    Mangavati S, Pal A, Rao A, Jiang Z Z, Kuo Y K 2022 J. Phys. Chem. Solids. 160 110301Google Scholar

    [10]

    Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z 2021 ACS Appl. Mater. Interfaces 13 58936Google Scholar

    [11]

    Zhang J, Zhu T, Zhang C, Yan Y, Tan G, Liu W, Su X, Tang X 2021 J. Alloy. Compd. 881 160639Google Scholar

    [12]

    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G 2021 ACS Nano. 15 19345Google Scholar

    [13]

    Zhang R, Pei J, Shan Z, Zhou W, Wu Y, Han Z, Zhao Y H, Li J F, Ge Z H, Zhang B P 2022 Chem. Eng. J. 429 132275Google Scholar

    [14]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [15]

    Cao Y, Bai H, Li Z, Zhang Z, Tang Y, Su X, Wu J, Tang X 2021 ACS Appl. Mater. Interfaces 13 43134Google Scholar

    [16]

    Su X, Hao S, Bailey T P, Wang S, Hadar I, Tan G, Song T B, Zhang Q, Uher C, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [17]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [18]

    Cai S, Hao S, Luo Y, Su X, Luo Z-Z, Hu X, Wolverton C, Dravid V P, Kanatzidis M G 2020 Chem. Mater. 32 3561Google Scholar

    [19]

    Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L, Wu L M 2021 J. Am. Chem. Soc. 143 18490Google Scholar

    [20]

    Xia Y, Ozolins V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [21]

    Chen X, Carrete J, Sullivan S, van Roekeghem A, Li Z, Li X, Zhou J, Mingo N, Shi L 2019 Phys. Rev. Lett. 122 185901Google Scholar

    [22]

    Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S, Strobel T A 2017 Phys. Rev. Lett. 118 146601Google Scholar

    [23]

    Ren W, Geng H, Zhang Z, Zhang L 2017 Phys. Rev. Lett. 118 245901Google Scholar

    [24]

    He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S, Goedecker S, Ozolins V, Wolverton C 2016 Phys. Rev. Lett. 117 046602Google Scholar

    [25]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [26]

    Su X, Zhao N, Hao S, Stoumpos C C, Liu M, Chen H, Xie H, Zhang Q, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Funct. Mater. 29 1806534Google Scholar

    [27]

    Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G, Zhou X 2019 J. Alloy. Compd. 805 444Google Scholar

    [28]

    Shen X, Shaheen N, Zhang A, Yang D, Yao W, Wang G, Lu X, Zhou X 2017 RSC Advances 7 12719Google Scholar

    [29]

    Panda R, Naik R, Mishra N C 2019 J. Alloy. Compd. 778 819Google Scholar

    [30]

    Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X, Zhou X 2019 Inorg. Chem. Front. 6 3545Google Scholar

    [31]

    Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L, Cui J L 2012 Key Eng. Mater. 519 188Google Scholar

    [32]

    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 3693Google Scholar

    [33]

    Xie H, Hao S, Bailey T P, Cai S, Zhang Y, Slade T J, Snyder G J, Dravid V P, Uher C, Wolverton C, Kanatzidis M G 2021 J. Am. Chem. Soc. 143 5978Google Scholar

    [34]

    Zhu Y, Wei B, Liu J, Koocher N Z, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli J M, Zhao L-D, Snyder G J, Hong J 2021 Mater. Today Phys. 19 100428Google Scholar

    [35]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

    [36]

    骆军, 何世洋, 李志立, 李永博, 王风, 张继业 2019 无机材料学报 34 247Google Scholar

    Luo J, He S Y, Li Z L, Li Y B, Wang F, Zhang J Y 2019 J. Inorg. Mater. 34 247Google Scholar

    [37]

    Deng T, Xing T, Brod M K, Sheng Y, Qiu P, Veremchuk I, Song Q, Wei T-R, Yang J, Snyder G J, Grin Y, Chen L, Shi X 2020 Energy Environ. Sci. 13 3041Google Scholar

    [38]

    Aikebaier Y, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 M. S. E.: B 177 999

    [39]

    Yang N, Chen C, Pan L, Zhao Y, Wang Y 2020 J. Alloy. Compd. 847 156410Google Scholar

    [40]

    Zhong Y, Luo Y, Li X, Cui J 2020 Appl. Energ. Mater. 3 12468Google Scholar

    [41]

    Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T 2017 Adv. Funct. Mater. 27 188Google Scholar

    [42]

    Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905Google Scholar

    [43]

    Li Y, Li Z, Zhang C, Yang D, Liu T, Yan Y, Liu W, Tan G, Su X, Uher C, Tang X 2019 Mater. Today Phys. 9 10905Google Scholar

    [44]

    Zhu Y, Liu Y, Wood M, Koocher N Z, Liu Y, Liu L, Hu T, Rondinelli J M, Hong J, Snyder G J, Xu W 2019 Chem. Mater. 31 8182Google Scholar

  • 图 1  (a) 三元Ag-In-Se系统示意相图; (b) 图(a)中红色区域的放大图

    Figure 1.  (a) Schematic ternary phase diagram of Ag-In-Se; (b) enlarged view of the red area in Fig.1 (a).

    图 2  (a) (Ag2Se)x(In2Se3)100–x (x = 0—20)的粉末XRD图谱; (b) x = 0, 3.3, 5.3, 10.9, 13.6和16的背散射图片; (c) 所合成x = 0, 3.3, 5.3, 8.3, 10.9, 13.6和16的样品不同衬度区域电子能谱组成Ag/In比, 紫色虚线为合成样品名义组成线, 红色圆圈标出的为单相组成

    Figure 2.  (a) Powder XRD pattern of (Ag2Se)x(In2Se3)100–x (x = 0–20); (b) backscattering electron (BSE) image of the samples with x = 0, 3.3, 5.3, 10.9, 13.6 and 16; (c) the ratio of Ag/In in x = 0, 3.3, 5.3, 8.3, 10.9, 13.6 and 16, the purple dotted line is the nominal composition line, and the red circle is marked as single-phase composition.

    图 3  (Ag2Se)x(In2Se3)100–x (x = 10.9)样品的慢扫XRD(红色)(10°—90°), 精修得到的衍射峰(黑色), Bragg 峰位 (绿色), 衍射峰的差异(蓝色), Rp = 6.84%, Rwp = 9.31%.

    Figure 3.  Rietveld refinement of (Ag2Se)x(In2Se3)100–x (x = 10.9), experimental (red point), calculated (black), Bragg position (green), defference (blue) Rp = 6.84%, Rwp = 9.31%.

    图 4  AgyIn3.33–y/3Se5的晶体结构图 (a) a轴投影; (b) c轴投影; (c) 单个晶胞的a轴投影; (d) 多面体的堆叠; (e) 以阳离子为中心的多面体

    Figure 4.  Crystal structure diagram of AgyIn3.33–y/3Se5: (a) a-axis projection; (b) c-axis projection; (c) a-axis projection of a single cell; (d) stacking of polyhedron; (e) cation centered polyhedron.

    图 5  (a)—(c) Ag0.392In3.203Se5烧结块体自由断裂面的不同放大倍数的场发射扫描电镜照片

    Figure 5.  (a)–(c) Field emission scanning electron microscope images of freshly fractured surface for Ag0.392In3.203Se5 bulk sample with different magnifications.

    图 6  (a) Ag0.392In3.203Se5样品的低倍高角度环形暗场像(HAADF-STEM); (b)—(d) 图(a)中Ag-In-Se元素的能谱面扫描图(EDS-Map)

    Figure 6.  (a) HAADF-STEM (high-angle annular dark-field STEM) image of Ag0.392In3.203Se5; (b)–(d) EDS elemental mapping of Ag, In, and Se of Fig. 6 (a).

    图 7  Ag0.392In3.203Se5 样品的微观图像 (a) [001]晶向的高倍高角度环形暗场像(HAADF-STEM); (b) 图(a)区域的选取电子衍射(SAED)和模拟的选取电子衍射(SAED); (c) [010] 晶向的高倍高角度环形暗场像(HAADF-STEM); (d) 图(c)区域的选取电子衍射(SAED)和模拟的选取电子衍射(SAED); (e), (f) 图(c)的染色放大图

    Figure 7.  Microstructure of Ag0.392In3.203Se5: (a) High-magnification HAADF-STEM image along the [001]; (b) SAED pattern and calculation of (a); (c) high-magnification HAADF-STEM image along the [010]; (d) SAED pattern and calculation of (c); (e), (f) enlarged image of Fig.7 (c).

    图 A1  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415)的XRD图谱

    Figure A1.  Powder XRD patterns of AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415).

    图 A2  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) 的背散射图片和元素面分布图

    Figure A2.  Backscattering electron (BSE) image and elemental distribution map of AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415).

    图 8  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415)电输运性能 (a) 电导率; (b) 赛贝克系数; (c) 功率因子; (d) 单抛带模型计算载流子有效质量

    Figure 8.  Temperature dependences of (a) the electrical conductivity, (b) Seebeck coefficient, and (c) power factor for the AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) samples; (d) Seebeck coefficients as a function of the charge carrier concentration at 300 K, where the dashed lines are Pisarenko plots based on the SPB model.

    图 9  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) 热输运性能和热电优值 (a) 热导率; (b) AgyIn3.33–y/3Se5 与AgInSe2[35], AgInTe2[38], AgIn5Se8[30]和CuInSe2[39]的晶格热导率; (c) AgyIn3.33–y/3Se5, AgInSe2[35], AgIn5Se8[30], Ag1.03In5Se8[30], Ag0.9Cd0.1InSe8[35], Ag1.02InSe2[35], Ag1.6InSe2.3[40]ZT值, 300—873 K; (d) 300—850 K的平均ZTavg

    Figure 9.  (a) The temperature-dependent of the total thermal conductivity for AgyIn3.33–y/3Se5; (b) the lattice thermal conductivity for AgyIn3.33–y/3Se5, AgInSe2[35], AgInTe2[38], AgIn5Se8[30] and CuInSe2[39]; (c) merit ZT for AgyIn3.33–y/3Se5, AgInSe2[35], AgIn5Se8[30], Ag1.03In5Se8[30], Ag0.9Cd0.1InSe8[35], Ag1.02InSe2[35], Ag1.6InSe2.3[40], at 300-873 K; (d) the average ZT at 300–850 K.

    图 10  Ag0.392In0.203Se5样品的低温热容 (a) $C_{\rm p}/T^3\text-T$; (b) $ C_{\rm p}/T\text-T^2 $

    Figure 10.  (a) The relationship between $ C_{\rm p}/T^3 $ and T, (b) Cp/T and T 2 of Ag0.392In0.203Se5.

    表 1  AgyIn3.33–y/3Se5样品的室温载流子浓度和迁移率

    Table 1.  The carrier concentration and Hall mobility of AgyIn3.33–y/3Se5 at room temperature.

    Sampley = 0.384y = 0.392y = 0.400y = 0.407y = 0.415
    μH / (cm2·V–1·s–1)136.42141.21144.80131.40130.69
    nH /(1019 cm–3)1.881.701.681.931.85
    DownLoad: CSV

    表 2  Ag0.392In0.203Se5样品使用德拜-爱因斯坦模型拟合低温热容的参数

    Table 2.  Parameters obtained by fitting the experimental low-temperature heat capacity data to the Debye-Einstein model of Ag0.392In0.203Se5.

    Sampleγ/
    (mJ·mol–1·K–2)
    b/
    (mJ·mol–1·K–4)
    A1θE1/KA2θE1/KθD/K
    y = 0.3920.028132.95 × 10–413.4340.1857.0182.63164
    DownLoad: CSV

    表 3  Ag0.392In0.203Se5, AgInSe2[44]和AgIn5Se8[30]的室温杨氏模量E、格林艾森常数常数γ对比

    Table 3.  Comparisons of Elastic properties and Grüneisen parameters at room temperature between Ag0.392In0.203Se5, AgInSe2[44], and AgIn5Se8[30].

    ParameterAg0.392In3.203Se5AgInSe2AgIn5Se8
    vl/(m·s–1)305835843778
    vs/(m·s–1)152715301803
    va/(m·s–1)171317292028
    E /GPa35.052.550.6
    γ2.002.872.20
    DownLoad: CSV
    Baidu
  • [1]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [2]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [5]

    Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, Liu W, Yan Y, Wolverton C, Uher C, Kanatzidis M G, Tang X 2018 Energy Environ. Sci. 11 1520Google Scholar

    [6]

    Tao Q, Deng R, Li J, Yan Y, Su X, Poudeu P F P, Tang X 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [8]

    Chen Z G, Shi X, Zhao L-D, Zou J 2018 Prog. Mater. Sci. 97 283Google Scholar

    [9]

    Mangavati S, Pal A, Rao A, Jiang Z Z, Kuo Y K 2022 J. Phys. Chem. Solids. 160 110301Google Scholar

    [10]

    Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z 2021 ACS Appl. Mater. Interfaces 13 58936Google Scholar

    [11]

    Zhang J, Zhu T, Zhang C, Yan Y, Tan G, Liu W, Su X, Tang X 2021 J. Alloy. Compd. 881 160639Google Scholar

    [12]

    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G 2021 ACS Nano. 15 19345Google Scholar

    [13]

    Zhang R, Pei J, Shan Z, Zhou W, Wu Y, Han Z, Zhao Y H, Li J F, Ge Z H, Zhang B P 2022 Chem. Eng. J. 429 132275Google Scholar

    [14]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [15]

    Cao Y, Bai H, Li Z, Zhang Z, Tang Y, Su X, Wu J, Tang X 2021 ACS Appl. Mater. Interfaces 13 43134Google Scholar

    [16]

    Su X, Hao S, Bailey T P, Wang S, Hadar I, Tan G, Song T B, Zhang Q, Uher C, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [17]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [18]

    Cai S, Hao S, Luo Y, Su X, Luo Z-Z, Hu X, Wolverton C, Dravid V P, Kanatzidis M G 2020 Chem. Mater. 32 3561Google Scholar

    [19]

    Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L, Wu L M 2021 J. Am. Chem. Soc. 143 18490Google Scholar

    [20]

    Xia Y, Ozolins V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [21]

    Chen X, Carrete J, Sullivan S, van Roekeghem A, Li Z, Li X, Zhou J, Mingo N, Shi L 2019 Phys. Rev. Lett. 122 185901Google Scholar

    [22]

    Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S, Strobel T A 2017 Phys. Rev. Lett. 118 146601Google Scholar

    [23]

    Ren W, Geng H, Zhang Z, Zhang L 2017 Phys. Rev. Lett. 118 245901Google Scholar

    [24]

    He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S, Goedecker S, Ozolins V, Wolverton C 2016 Phys. Rev. Lett. 117 046602Google Scholar

    [25]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [26]

    Su X, Zhao N, Hao S, Stoumpos C C, Liu M, Chen H, Xie H, Zhang Q, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Funct. Mater. 29 1806534Google Scholar

    [27]

    Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G, Zhou X 2019 J. Alloy. Compd. 805 444Google Scholar

    [28]

    Shen X, Shaheen N, Zhang A, Yang D, Yao W, Wang G, Lu X, Zhou X 2017 RSC Advances 7 12719Google Scholar

    [29]

    Panda R, Naik R, Mishra N C 2019 J. Alloy. Compd. 778 819Google Scholar

    [30]

    Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X, Zhou X 2019 Inorg. Chem. Front. 6 3545Google Scholar

    [31]

    Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L, Cui J L 2012 Key Eng. Mater. 519 188Google Scholar

    [32]

    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 3693Google Scholar

    [33]

    Xie H, Hao S, Bailey T P, Cai S, Zhang Y, Slade T J, Snyder G J, Dravid V P, Uher C, Wolverton C, Kanatzidis M G 2021 J. Am. Chem. Soc. 143 5978Google Scholar

    [34]

    Zhu Y, Wei B, Liu J, Koocher N Z, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli J M, Zhao L-D, Snyder G J, Hong J 2021 Mater. Today Phys. 19 100428Google Scholar

    [35]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

    [36]

    骆军, 何世洋, 李志立, 李永博, 王风, 张继业 2019 无机材料学报 34 247Google Scholar

    Luo J, He S Y, Li Z L, Li Y B, Wang F, Zhang J Y 2019 J. Inorg. Mater. 34 247Google Scholar

    [37]

    Deng T, Xing T, Brod M K, Sheng Y, Qiu P, Veremchuk I, Song Q, Wei T-R, Yang J, Snyder G J, Grin Y, Chen L, Shi X 2020 Energy Environ. Sci. 13 3041Google Scholar

    [38]

    Aikebaier Y, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 M. S. E.: B 177 999

    [39]

    Yang N, Chen C, Pan L, Zhao Y, Wang Y 2020 J. Alloy. Compd. 847 156410Google Scholar

    [40]

    Zhong Y, Luo Y, Li X, Cui J 2020 Appl. Energ. Mater. 3 12468Google Scholar

    [41]

    Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T 2017 Adv. Funct. Mater. 27 188Google Scholar

    [42]

    Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905Google Scholar

    [43]

    Li Y, Li Z, Zhang C, Yang D, Liu T, Yan Y, Liu W, Tan G, Su X, Uher C, Tang X 2019 Mater. Today Phys. 9 10905Google Scholar

    [44]

    Zhu Y, Liu Y, Wood M, Koocher N Z, Liu Y, Liu L, Hu T, Rondinelli J M, Hong J, Snyder G J, Xu W 2019 Chem. Mater. 31 8182Google Scholar

  • [1] ZHANG Min, TANG Guihua, SHI Xiaolei, LI Yifei, ZHAO Xin, HUANG Dian, CHEN Zhigang. Influence of biaxial strain effects on thermal transport and thermoelectric performance of Janus transition metal dichalcogenide monolayers. Acta Physica Sinica, 2025, 74(13): 137202. doi: 10.7498/aps.74.20250295
    [2] Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng. Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds. Acta Physica Sinica, 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [3] Li Qiang, Chen Shuo, Liu Ke-Ke, Lu Zhi-Qiang, Hu Qin, Feng Li-Ping, Zhang Qing-Jie, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds. Acta Physica Sinica, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [4] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [5] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [6] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [8] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [9] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [11] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [12] Zhou Long, Li Han, Su Xian-Li, Tang Xin-Feng. Effects of In doping on crystal structure and thermoelectric properties of n-type skutterudites. Acta Physica Sinica, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [13] Guo Quan-Sheng, Li Han, Su Xian-Li, Tang Xin-Feng. Microstructure and themoelectric properties of p-type filled skutterudite Ce0.3Fe1.5Co2.5Sb12 prepared by melt-spinning method. Acta Physica Sinica, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [14] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [15] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [16] Deng Shu-Kang, Tang Xin-Feng, Yang Pei-Zhi, Yan Yong-Gao. Structure and thermoelectric properties of p-type Ge-based Ba8Ga16CdxGe30-x type-Ⅰ clathrates doping by Cd. Acta Physica Sinica, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [17] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [18] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] Preparation and thermoelectric properties of p-type Ag0.5(Pb8-xSnx)In0.5Te10 compounds. Acta Physica Sinica, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [20] Tang Xin-feng, Chen Li-Dong, T Goto, T Hiral, Yuan Run-Zhang. Thermoelectricpropertiesofn typeBayNixCo4-xSb1 2. Acta Physica Sinica, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
Metrics
  • Abstract views:  6832
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2022
  • Accepted Date:  06 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回
Baidu
map