-
A series of Ag-doped p-type Agx(Pb0.5Sn0.5)1-xTe compounds is prepared by melting followed by slow-cooling process, and the phase compositions, microstructures and thermoelectric properties are also systematically investigated. The introduction of Ag in Pb/Sn site effectively increases the hole density which is much lower than the theoretically predicated value in the approximation of complete substitution and single acceptor of Ag, in spite of the fact that all samples show finely single phase for the 5% Ag-doped sample. This implies that part of Ag atoms enter into the interstitial sites acting as electron donor to reduce the hole density. With the increase of Ag content, the electrical conductivity increases gradually and the Seebeck coefficient shows an opposite variation tendency, mainly owing to the variation of hole density. Interestingly, the anomalous crossover of Seebeck coefficient at about 450 K indicates the transition of dominating valence valley from light-band to heavy-band while temperature is higher than 450 K. Consequently, due to the optimization of hole density and the domination of heavy band with large effective mass, 1% Ag-doped sample obtains a highest power factor of 2.1 mWm-1K-2 at 750 K, which results in a highest ZT of 1.05 combined with the suppressed lattice thermal conductivity via intensifying point defect phonon scattering. This high ZT is ~ 50% higher than that of Ag-free sample and also higher than commercial p-type PbTe material. Further, the 50% substitution of toxic and heavy Pb by Sn is beneficial for the practical application and environmental sustainability of PbTe-based materials.
-
Keywords:
- Ag-doping /
- Sn-alloying /
- hole density /
- thermoelectric properties
[1] Tritt T M, Bottner H, Chen L D 2008 MRS Bull. 33 366
[2] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章 2001 50 1560]
[3] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[4] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[5] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66
[6] Biswas K, He J Q, Zhang Q C, Wang G Y, Uher C, Dravid V P, Kanatzidis M G 2011 Nature Chem. 3 160
[7] Jaworski C P, Wiendlocha B, Jovovic V, Heremans J P 2011 Energy Environ. Sci. 4 2085
[8] Yadav G G, Susoreny J A, Zhang G Q, Yang H R, Wu Y 2011 Nanoscale 3 3555
[9] Vaqueiro P, Powell A V 2010 J. Mater. Chem. 20 9577
[10] Joffe A F, Stil'bans L S 1959 Rep. Prog. Phys. 22 167
[11] Dimmock J O, Melngailis I, Strauss A J 1966 Phys. Rev. Lett. 16 1193
[12] Arachchige I U, Kanatzidis M G 2009 Nano Lett. 9 1583
[13] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[14] Ravich Y I, Efimova B A, Smirnov I A 1970 Semiconducting Lead Chalcogenides (New York, London: Plenum Press)
[15] Bozin E, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660
[16] Androulakis J, Todorov I, He J Q, Chung D Y, Dravid V, Kanatzidis M G 2011 J. Am. Chem. Soc. 133 10920
[17] Pei Y Z, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085
[18] Pei Y Z, May A F, Snyder G J 2011 Adv. Energy Mater. 1 291
[19] Androulakis J, Lee Y, Todorov I, Chung D Y, Kanatzidis M 2011 Phys. Rev. B 83 195209
[20] Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869
[21] Wang H, Pei Y Z, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366
[22] Wang S Y, Xie W J, Li H, Tang X F 2010 Acta Phys. Sin. 59 605 (in Chinese) [王善禹, 谢文杰, 李涵, 唐新峰 2010 59 605]
[23] Du B L, Xu J J, Yan Y G, Tang X F 2011 Acta Phys. Sin. 60 018403 (in Chinese) [杜保立, 徐静静, 鄢永高, 唐新峰 2011 60 018403]
-
[1] Tritt T M, Bottner H, Chen L D 2008 MRS Bull. 33 366
[2] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章 2001 50 1560]
[3] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[4] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[5] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66
[6] Biswas K, He J Q, Zhang Q C, Wang G Y, Uher C, Dravid V P, Kanatzidis M G 2011 Nature Chem. 3 160
[7] Jaworski C P, Wiendlocha B, Jovovic V, Heremans J P 2011 Energy Environ. Sci. 4 2085
[8] Yadav G G, Susoreny J A, Zhang G Q, Yang H R, Wu Y 2011 Nanoscale 3 3555
[9] Vaqueiro P, Powell A V 2010 J. Mater. Chem. 20 9577
[10] Joffe A F, Stil'bans L S 1959 Rep. Prog. Phys. 22 167
[11] Dimmock J O, Melngailis I, Strauss A J 1966 Phys. Rev. Lett. 16 1193
[12] Arachchige I U, Kanatzidis M G 2009 Nano Lett. 9 1583
[13] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[14] Ravich Y I, Efimova B A, Smirnov I A 1970 Semiconducting Lead Chalcogenides (New York, London: Plenum Press)
[15] Bozin E, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660
[16] Androulakis J, Todorov I, He J Q, Chung D Y, Dravid V, Kanatzidis M G 2011 J. Am. Chem. Soc. 133 10920
[17] Pei Y Z, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085
[18] Pei Y Z, May A F, Snyder G J 2011 Adv. Energy Mater. 1 291
[19] Androulakis J, Lee Y, Todorov I, Chung D Y, Kanatzidis M 2011 Phys. Rev. B 83 195209
[20] Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869
[21] Wang H, Pei Y Z, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366
[22] Wang S Y, Xie W J, Li H, Tang X F 2010 Acta Phys. Sin. 59 605 (in Chinese) [王善禹, 谢文杰, 李涵, 唐新峰 2010 59 605]
[23] Du B L, Xu J J, Yan Y G, Tang X F 2011 Acta Phys. Sin. 60 018403 (in Chinese) [杜保立, 徐静静, 鄢永高, 唐新峰 2011 60 018403]
Catalog
Metrics
- Abstract views: 7084
- PDF Downloads: 537
- Cited By: 0