-
In the thermoelectric field, GeSe is a two-dimensional layered semiconductor with a large band gap, intrinsically low carrier concentration and poor thermoelectric figure of merit ZT. In this work, a series of GeSe1–xTex (x = 0, 0.05, 0.15, 0.25, 0.35, 0.45) polycrystalline samples is prepared by melting and quenching combined with spark plasma activation sintering process. The influences of Te content on the phase structure and thermoelectric transport properties of GeSe are systematically studied. The results indicate that with the increase of Te content, the crystal structure of GeSe gradually changes from orthorhombic to rhombohedral structure. This reduces the band gap of the material, and simultaneously increases the carrier concentration and mobility. Meanwhile, the energy band degeneracy of the compound increases significantly because of enhanced crystal symmetry in this process, thereby considerably improving the effective mass of carriers. Altogether, the power factor of the rhombohedral GeSe is increased by about 2 to 3 orders of magnitude compared with that of the orthorhombic phase GeSe. In addition, the rhombohedral phase GeSe has abundant cationic vacancy defects and softened phonons arising from its ferroelectric feature, leading the lattice thermal conductivity to be 60% lower than orthorhombic one. The GeSe0.55Te0.45 sample achieves a peak ZT of 0.75 at 573 K, which is 19 times that of pristine GeSe. Crystal structure engineering could be considered as an effective way of improving the thermoelectric performance of GeSe compounds.
-
Keywords:
- GeSe /
- crystal structure engineering /
- thermoelectric properties /
- semiconductors
[1] Wang Y, Shi Y, Mei D, Chen Z 2017 Appl. Energy 205 710Google Scholar
[2] Kim Y J, Gu H M, Kim C S, Choi H, Lee G, Kim S, Yi K K, Lee S G, Cho B J 2018 Energy 162 526Google Scholar
[3] Tan G, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar
[4] Okazaki A 1958 J. Phys. Soc. Jpn. 13 1151Google Scholar
[5] Sist M, Gatti C, Norby P, Cenedese S, Kasai H, Kato K, Iversen B B 2017 Chem. Eur. J. 23 6888Google Scholar
[6] Kim Y, Choi I-H 2018 J. Korean Phys. Soc. 72 238Google Scholar
[7] Hao S, Shi F, Dravid V P, Kanatzidis M G, Wolverton C 2016 Chem. Mater. 28 3218Google Scholar
[8] Fan Q, Yang J, Cao J, Liu C 2021 R. Soc. Open Sci. 8 201980Google Scholar
[9] Yuan K, Sun Z, Zhang X, Tang D 2019 Sci. Rep. 9 9490Google Scholar
[10] Roychowdhury S, Ghosh T, Arora R, Waghmare U V, Biswas K 2018 Angew. Chem. Int. Ed. 57 15167Google Scholar
[11] Yan M, Geng H, Jiang P, Bao X 2020 J. Energy Chem. 45 83Google Scholar
[12] Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, Pei Y 2016 J. Materiomics 2 331Google Scholar
[13] Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, Zhuang W, Snyder G J, Jiang P, Bao X 2017 Angew. Chem. Int. Ed. 56 14113Google Scholar
[14] Yan M, Tan X, Huang Z, Liu G, Jiang P, Bao X 2018 J. Mater. Chem. A 6 8215Google Scholar
[15] Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare U V, Biswas K 2020 J. Am. Chem. Soc. 142 12237Google Scholar
[16] Li J, Zhang X, Lin S, Chen Z, Pei Y 2017 Chem. Mater. 29 605Google Scholar
[17] Wang Z, Wu H, Xi M, Zhu H, Dai L, Xiong Q, Wang G, Han G, Lu X, Zhou X, Wang G 2020 ACS Appl. Mater. Interfaces 12 41381Google Scholar
[18] Sidharth D, Alagar Nedunchezhian A S, Akilan R, Srivastava A, Srinivasan B, Immanuel P, Rajkumar R, Yalini Devi N, Arivanandhan M, Liu C J, Anbalagan G, Shankar R, Jayavel R 2021 Sustain. Energy Fuels 5 1734Google Scholar
[19] Shaabani L, Aminorroaya-Yamini S, Byrnes J, Akbar Nezhad A, Blake G R 2017 ACS Omega 2 9192Google Scholar
[20] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar
Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar
[21] Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar
[22] 黄平, 游理, 梁星, 张继业, 骆军 2019 68 077201Google Scholar
Huang P, You L, Liang X, Zhang J Y, Luo J 2019 Acta Phys. Sin. 68 077201Google Scholar
[23] 苏贤礼, 唐新峰, 李涵, 邓书康 2008 57 6488Google Scholar
Su X L, Tang X F, Li H, Deng S G 2008 Acta Phys. Sin. 57 6488Google Scholar
[24] Sun J, Su X, Yan Y, Liu W, Tan G, Tang X 2020 ACS Appl. Energy Mater. 3 2Google Scholar
[25] Zhang W, Chen C, Yao H, Xue W, Li S, Bai F, Huang Y, Li X, Lin X, Cao F, Sui J, Wang S, Yu B, Wang Y, Liu X, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar
[26] Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis M G, Tang X 2020 J. Mater. Chem. A 8 1193Google Scholar
[27] Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, Tang X 2018 J. Am. Chem. Soc. 140 2673Google Scholar
[28] Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar
[29] Franz R, Wiedemann G 1853 Ann. Phys. 165 497
[30] Pietrak K, Wisniewski T S 2015 J. Power Technol. 95 14
[31] Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Energy Environ. Sci. 12 589Google Scholar
-
图 2 GeSe1–xTex (x = 0—0.45)样品的 (a)粉末XRD图谱; (b) 28°—35°粉末XRD图谱; (c)晶胞参数; (d) GeSe-GeTe赝二元相图
Figure 2. (a) Powder XRD patterns of GeSe1–xTex samples (x = 0–0.45); (b) enlarged view of XRD patterns (2θ = 28°–35°); (c) the a, b and c lattice parameters of GeSe1–xTex samples (x = 0–0.45); (d) GeSe-GeTe pseudo-binary phase diagram.
表 1 室温下GeSe1–xTex样品中各种物相的质量分数
Table 1. Mass fractions of various phases in GeSe1–xTex (x = 0.15, 0.25, 0.35) samples at room temperature.
样品组分(GeSe1–xTex) 质量分数/% 正交相 菱方相 x = 0.15 80.9 19.1 x = 0.25 58.5 41.5 x = 0.35 11.2 88.8 -
[1] Wang Y, Shi Y, Mei D, Chen Z 2017 Appl. Energy 205 710Google Scholar
[2] Kim Y J, Gu H M, Kim C S, Choi H, Lee G, Kim S, Yi K K, Lee S G, Cho B J 2018 Energy 162 526Google Scholar
[3] Tan G, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar
[4] Okazaki A 1958 J. Phys. Soc. Jpn. 13 1151Google Scholar
[5] Sist M, Gatti C, Norby P, Cenedese S, Kasai H, Kato K, Iversen B B 2017 Chem. Eur. J. 23 6888Google Scholar
[6] Kim Y, Choi I-H 2018 J. Korean Phys. Soc. 72 238Google Scholar
[7] Hao S, Shi F, Dravid V P, Kanatzidis M G, Wolverton C 2016 Chem. Mater. 28 3218Google Scholar
[8] Fan Q, Yang J, Cao J, Liu C 2021 R. Soc. Open Sci. 8 201980Google Scholar
[9] Yuan K, Sun Z, Zhang X, Tang D 2019 Sci. Rep. 9 9490Google Scholar
[10] Roychowdhury S, Ghosh T, Arora R, Waghmare U V, Biswas K 2018 Angew. Chem. Int. Ed. 57 15167Google Scholar
[11] Yan M, Geng H, Jiang P, Bao X 2020 J. Energy Chem. 45 83Google Scholar
[12] Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, Pei Y 2016 J. Materiomics 2 331Google Scholar
[13] Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, Zhuang W, Snyder G J, Jiang P, Bao X 2017 Angew. Chem. Int. Ed. 56 14113Google Scholar
[14] Yan M, Tan X, Huang Z, Liu G, Jiang P, Bao X 2018 J. Mater. Chem. A 6 8215Google Scholar
[15] Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare U V, Biswas K 2020 J. Am. Chem. Soc. 142 12237Google Scholar
[16] Li J, Zhang X, Lin S, Chen Z, Pei Y 2017 Chem. Mater. 29 605Google Scholar
[17] Wang Z, Wu H, Xi M, Zhu H, Dai L, Xiong Q, Wang G, Han G, Lu X, Zhou X, Wang G 2020 ACS Appl. Mater. Interfaces 12 41381Google Scholar
[18] Sidharth D, Alagar Nedunchezhian A S, Akilan R, Srivastava A, Srinivasan B, Immanuel P, Rajkumar R, Yalini Devi N, Arivanandhan M, Liu C J, Anbalagan G, Shankar R, Jayavel R 2021 Sustain. Energy Fuels 5 1734Google Scholar
[19] Shaabani L, Aminorroaya-Yamini S, Byrnes J, Akbar Nezhad A, Blake G R 2017 ACS Omega 2 9192Google Scholar
[20] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar
Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar
[21] Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar
[22] 黄平, 游理, 梁星, 张继业, 骆军 2019 68 077201Google Scholar
Huang P, You L, Liang X, Zhang J Y, Luo J 2019 Acta Phys. Sin. 68 077201Google Scholar
[23] 苏贤礼, 唐新峰, 李涵, 邓书康 2008 57 6488Google Scholar
Su X L, Tang X F, Li H, Deng S G 2008 Acta Phys. Sin. 57 6488Google Scholar
[24] Sun J, Su X, Yan Y, Liu W, Tan G, Tang X 2020 ACS Appl. Energy Mater. 3 2Google Scholar
[25] Zhang W, Chen C, Yao H, Xue W, Li S, Bai F, Huang Y, Li X, Lin X, Cao F, Sui J, Wang S, Yu B, Wang Y, Liu X, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar
[26] Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis M G, Tang X 2020 J. Mater. Chem. A 8 1193Google Scholar
[27] Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, Tang X 2018 J. Am. Chem. Soc. 140 2673Google Scholar
[28] Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar
[29] Franz R, Wiedemann G 1853 Ann. Phys. 165 497
[30] Pietrak K, Wisniewski T S 2015 J. Power Technol. 95 14
[31] Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Energy Environ. Sci. 12 589Google Scholar
Catalog
Metrics
- Abstract views: 5823
- PDF Downloads: 157
- Cited By: 0