Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional numerical study of effect of magnetic field on evolution of laser-driven jets

Sun Wei Lü Chong Lei Zhu Wang Zhao Zhong Jia-Yong

Citation:

Two-dimensional numerical study of effect of magnetic field on evolution of laser-driven jets

Sun Wei, Lü Chong, Lei Zhu, Wang Zhao, Zhong Jia-Yong
PDF
HTML
Get Citation
  • Astrophysical jets are highly collimated supersonic plasma beams distributed across various astrophysical backgrounds. The triggering mechanism, collimation transmission, and stability of jets have always been a research hotspot of astrophysics. In recent years, observations and laboratory research have found that the magnetic field plays a crucial role in jet collimation, transmission, and acceleration. In this work, the two-dimensional numerical simulation of the jet in front of the CH plane target driven by an intense laser is carried out by using the open-source MHD FLASH simulation program. We systematically investigate the dynamic behaviors of jet evolution caused by the Biermann self-generated magnetic field, the external magnetic field with different directions and initial strengths and compare them with each other. Simulation results show that the Biermann self-generated magnetic field does not affect the jet interface dynamics. The external magnetic field has a redirecting effect on the plasma outflow. The external magnetic field, which is parallel to the direction of the plasma outflow center in front of the target, is conducive to the generation and collimation of the jet. The evolution of the jet goes through three stages: antimagnetic ellipsoid cavity, conical nozzle, and collimated jet. Its formation process and evolution process result from competition among plasma thermal, magnetic, and ram pressure. In terms of force, plasma thermal pressure gradient and magnetic pressure forces play a decisive role in the jet evolution process. The presence of magnetic pressure significantly limits the radial expansion of the jet to achieve axial collimation transmission. The length-diameter ratio of the jet is positively correlated with the initial axial applied magnetic field intensity. In addition, we observe in the simulation that there are many node-like structures in the jet evolution zone, similar to the jet node in YSO. The results provide a reference for future experimental research related to jets and contribute to a more in-depth understanding of the evolution of celestial jets.
      Corresponding author: Lü Chong, lvchong@ciae.ac.cn ; Zhong Jia-Yong, jyzhong@bnu.edu.cn
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant Nos. 12205382, U2267204, 12005305), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25030700), and the Funding Project of Director, China Institute of Atomic Energy
    [1]

    Durant M, Kargaltsev O, Pavlov G G, Kropotina J, Levenfish K 2013 Astrophys. J. 763 72Google Scholar

    [2]

    Lu Y, Tzeferacos P, Liang E, Follett R K, Gao L, Birkel A, Froula D H, Fu W, Ji H, Lamb D, Li C K, Sio H, Petrasso R, Wei M S 2019 Phys. Plasmas 26 022902Google Scholar

    [3]

    Ferrari A 1998 Rev. Astron. Astrophys. 36 539Google Scholar

    [4]

    Soderberg A M, Kulkarni S R, Nakar E, Berger E, Cameron P B, Fox D B, Frail D, Gal-Yam D, Sari R, Cenko S B, Kasliwal M, Chevalier R A, Piran T, Price P A, Schmidt B P, Pooley G, Moon D S, Penprase B E, Ofek E, Rau A, Gehrels N, Nousek J A, Burrows D N, Persson D N, McCarthy P J 2006 Nature 442 7106Google Scholar

    [5]

    Lee, C F, Ho P, Li Z Y, Hirano N, Zhang Q, Shang H 2017 Nat. Astron. 1 0152Google Scholar

    [6]

    Hartigan P, Foster P, Wilde B H, Coker R F, Rosen P A, Hansen J F, Blue B E, Williams R J R, Carver R, Frank A 2009 Astrophys. J. 705 1073Google Scholar

    [7]

    Gregory C D, Howe J, Loupias B, Myers S, Notley M, Sakawa Y, Oya A, Kodama R, Keonig R, Woolsey N 2008 Astrophys. J. 676 420Google Scholar

    [8]

    Blandford R D, Payne D G 1982 Mon. Not. R. Astron. Soc. 199 883Google Scholar

    [9]

    Ferreira J 1997 Astron. Astrophys. 319 340Google Scholar

    [10]

    Tanaka S J, Toma K 2020 Mon. Not. R. Astron. Soc. 494 338Google Scholar

    [11]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Controlled Fusion 62 095020Google Scholar

    [12]

    Lazzati D, Covino S, Gorosabel J, Rossi E, Zerbi F M 2004 Astron. Astrophys. 422 121Google Scholar

    [13]

    Ryutov D, Drake R, Kane J, Liang E, Remington B A, Wood-Vasey W M 1999 The Astrophys. J. 518 821Google Scholar

    [14]

    Ryutov D, Drake R, Remington B 2000 Astrophys. J. Suppl. Ser. 127 465Google Scholar

    [15]

    Sun W, Zhong J Y 2021 Chin. Astron. Astrophys. 45 265Google Scholar

    [16]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar

    [17]

    Yuan D W, Li Y T, Tao T, Wei H G, Zhong J Y, Zhu B J, Li Y F, Zhao J R, Li F, Han B, Zhang Z, Liang G Y, Wang F L, Hu G Y, Zheng J, Jiang S N, Du K, Ding Y K, Zhou S L, Zhu B Q, Zhu J Q, Zhao G, Zhang J 2018 Astrophys. J. 860 146Google Scholar

    [18]

    Li C K, Tzeferacos P, Lamb D, et al. 2016 Nat. Commun. 7 1Google Scholar

    [19]

    Gao L, Liang E, Lu Y, Follet R K, Sio H, Tzeferacos P, Froula D H, Birkel A, Li C K, Lamb D, Petrasso R, Fu W, Wei M, Ji H 2019 Astrophys. J. Lett. 873 L11Google Scholar

    [20]

    Filippov E D, Makarov S S, Burdonov K F, Yao W, Fuchs J 2021 Sci. Rep. 11 8180Google Scholar

    [21]

    Lei Z, Zhao Z H, Xie Y, Yuan W Q, Li L X, Gu L X, Li X Y, Zhu B Q, Zhu J Q, Zhu S P, He X T, Qiao B 2022 arXiv: 2203.06326 [physics.plasm-ph]

    [22]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273Google Scholar

    [23]

    孙伟, 安维明, 仲佳勇 2020 69 244701Google Scholar

    Sun W, An W M, Zhong J Y 2020 Acta Phys. Sin. 69 244701Google Scholar

    [24]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [25]

    Stamper J, Ripi B 1975 Phys. Rev. Lett. 34 138Google Scholar

    [26]

    Biermann L 1950 Zeitschrift Naturforschung Teil A 5 65Google Scholar

    [27]

    Doi K, Susa H 2011 Astrophys. J. 741 93Google Scholar

  • 图 1  激光驱动CH平面靶产生喷流的初始模拟布置图

    Figure 1.  Initial simulated setup for generating jet using a laser-driven CH flat-target

    图 2  不同时刻下的电子密度分布, 不同列对应不同时刻, 分别为2.5, 5和7.5 ns; 不同行对应不同磁场情况, 其中(a)—(c)无磁场情况; (d)—(f)$ \alpha=30^{\circ} $, 初始外加20 T磁场情况; (g)—(i)$ \alpha=45^{\circ} $, 初始外加20 T磁场情况

    Figure 2.  Snapshots of the electron density distribution at different times. Different columns correspond to different times, 2.5, 5 and 7.5 ns respectively. Different rows correspond to different magnetic fields: (a)–(c) Non-magnetic fields; (d)–(f) $ \alpha=30^{\circ} $ with 20 T; (g)–(i) $ \alpha=45^{\circ} $with 20 T

    图 3  Biermann自生磁场的强度分布情况, 不同行表征不同外加磁场情况, 不同列代表不同时刻(2.5, 5, 7.5 ns) (a)—(c)无外加磁场; (d)—(f)$ \alpha=30^{\circ} $, 初始外加20 T磁场情况

    Figure 3.  Snapshots of the distribution of of Biermann self-generated magnetic field. Different rows represent different applied magnetic field conditions, and different columns represent different times (2.5, 5, 7.5 ns): (a)–(c) Absence of an applied magnetic field; (d)–(f) $ \alpha=30^{\circ} $ and an initial magnetic field of 20 T applied

    图 4  $t=5\; {\rm{ns}}$时刻外加磁场强度分布 (a)$ \alpha=0^{\circ} $; (b)$ \alpha=30^{\circ} $; (c)$ \alpha=45^{\circ} $

    Figure 4.  Distribution of applied magnetic field strength at $t=5 \;{\rm{ns}}$. (a), (b) and (c) respectively correspond to $ \alpha=0^{\circ} $, $ \alpha=30^{\circ} $ and $ \alpha=45^{\circ} $ case

    图 5  α =$ 0^{\circ} $、初始外加20 T磁场条件下, 不同时刻的电子密度分布情况 (a)—(d)分别对应10, 15, 20和25 ns

    Figure 5.  Snapshots of the electron density distribution at the different times under the condition of α =$ 0^{\circ} $ and initial applied 20 T: (a)–(d) corresponds to 10, 15, 20 and 25 ns respectively

    图 6  $ \alpha=0^{\circ} $、初始外加20 T磁场条件下, 不同时刻的磁场强度分布 (a)—(d)分别对应10, 15, 20和25 ns

    Figure 6.  Distribution of applied magnetic field at different times under the condition of $ \alpha=0^{\circ} $ and initial applied 20 T magnetic field: (a)–(d) corresponds to 10, 15, 20 and 25 ns respectively

    图 7  $ \alpha=0^{\circ} $、初始外加20 T磁场条件下, $ t=10\ {\rm{ns}} $时(a)热压、(b)磁压、(c)冲压强度分布情况

    Figure 7.  Under the condition of $ \alpha=0^{\circ} $ and initial applied 20 T magnetic field, the distribution of (a) hot pressure, (b) magnetic pressure and (c) stamping strength at $t=10\; {\rm{ns}}$

    图 8  $ \alpha=0^{\circ} $时, 初始外加20 T磁场条件下, $ t=10\; {\rm{ns}} $时刻下, x-y平面内$ y=2\; {\rm{mm}} $范围的等离子体磁压、热压、冲压的对比情况

    Figure 8.  Comparison of plasma magnetic pressure, hot pressing and the ram pressure within the range of y = 2 mm in the x-y plane at the time of $ t=10\; {\rm{ns}} $ under the condition of $ \alpha=0^{\circ} $ and initial applied 20 T magnetic field

    图 9  $ \alpha=0^{\circ} $时, 初始外加20 T磁场条件下, $t=10\; {\rm{ns}}$ 时刻下, (a)热力梯度力、(b)磁压力、(c)磁张力的矢量分布

    Figure 9.  Vector distribution of (a) thermal gradient force, (b) magnetic pressure and (c) magnetic tension at the time of $t=10\; {\rm{ns}}$ under the condition of $ \alpha=0^{\circ} $ and initial applied 20 T magnetic field

    图 10  喷流长径比随时间的变化情况

    Figure 10.  Change of jet length-diameter ratio with time

    Baidu
  • [1]

    Durant M, Kargaltsev O, Pavlov G G, Kropotina J, Levenfish K 2013 Astrophys. J. 763 72Google Scholar

    [2]

    Lu Y, Tzeferacos P, Liang E, Follett R K, Gao L, Birkel A, Froula D H, Fu W, Ji H, Lamb D, Li C K, Sio H, Petrasso R, Wei M S 2019 Phys. Plasmas 26 022902Google Scholar

    [3]

    Ferrari A 1998 Rev. Astron. Astrophys. 36 539Google Scholar

    [4]

    Soderberg A M, Kulkarni S R, Nakar E, Berger E, Cameron P B, Fox D B, Frail D, Gal-Yam D, Sari R, Cenko S B, Kasliwal M, Chevalier R A, Piran T, Price P A, Schmidt B P, Pooley G, Moon D S, Penprase B E, Ofek E, Rau A, Gehrels N, Nousek J A, Burrows D N, Persson D N, McCarthy P J 2006 Nature 442 7106Google Scholar

    [5]

    Lee, C F, Ho P, Li Z Y, Hirano N, Zhang Q, Shang H 2017 Nat. Astron. 1 0152Google Scholar

    [6]

    Hartigan P, Foster P, Wilde B H, Coker R F, Rosen P A, Hansen J F, Blue B E, Williams R J R, Carver R, Frank A 2009 Astrophys. J. 705 1073Google Scholar

    [7]

    Gregory C D, Howe J, Loupias B, Myers S, Notley M, Sakawa Y, Oya A, Kodama R, Keonig R, Woolsey N 2008 Astrophys. J. 676 420Google Scholar

    [8]

    Blandford R D, Payne D G 1982 Mon. Not. R. Astron. Soc. 199 883Google Scholar

    [9]

    Ferreira J 1997 Astron. Astrophys. 319 340Google Scholar

    [10]

    Tanaka S J, Toma K 2020 Mon. Not. R. Astron. Soc. 494 338Google Scholar

    [11]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Controlled Fusion 62 095020Google Scholar

    [12]

    Lazzati D, Covino S, Gorosabel J, Rossi E, Zerbi F M 2004 Astron. Astrophys. 422 121Google Scholar

    [13]

    Ryutov D, Drake R, Kane J, Liang E, Remington B A, Wood-Vasey W M 1999 The Astrophys. J. 518 821Google Scholar

    [14]

    Ryutov D, Drake R, Remington B 2000 Astrophys. J. Suppl. Ser. 127 465Google Scholar

    [15]

    Sun W, Zhong J Y 2021 Chin. Astron. Astrophys. 45 265Google Scholar

    [16]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar

    [17]

    Yuan D W, Li Y T, Tao T, Wei H G, Zhong J Y, Zhu B J, Li Y F, Zhao J R, Li F, Han B, Zhang Z, Liang G Y, Wang F L, Hu G Y, Zheng J, Jiang S N, Du K, Ding Y K, Zhou S L, Zhu B Q, Zhu J Q, Zhao G, Zhang J 2018 Astrophys. J. 860 146Google Scholar

    [18]

    Li C K, Tzeferacos P, Lamb D, et al. 2016 Nat. Commun. 7 1Google Scholar

    [19]

    Gao L, Liang E, Lu Y, Follet R K, Sio H, Tzeferacos P, Froula D H, Birkel A, Li C K, Lamb D, Petrasso R, Fu W, Wei M, Ji H 2019 Astrophys. J. Lett. 873 L11Google Scholar

    [20]

    Filippov E D, Makarov S S, Burdonov K F, Yao W, Fuchs J 2021 Sci. Rep. 11 8180Google Scholar

    [21]

    Lei Z, Zhao Z H, Xie Y, Yuan W Q, Li L X, Gu L X, Li X Y, Zhu B Q, Zhu J Q, Zhu S P, He X T, Qiao B 2022 arXiv: 2203.06326 [physics.plasm-ph]

    [22]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273Google Scholar

    [23]

    孙伟, 安维明, 仲佳勇 2020 69 244701Google Scholar

    Sun W, An W M, Zhong J Y 2020 Acta Phys. Sin. 69 244701Google Scholar

    [24]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [25]

    Stamper J, Ripi B 1975 Phys. Rev. Lett. 34 138Google Scholar

    [26]

    Biermann L 1950 Zeitschrift Naturforschung Teil A 5 65Google Scholar

    [27]

    Doi K, Susa H 2011 Astrophys. J. 741 93Google Scholar

  • [1] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas. Acta Physica Sinica, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] Wang Yun-Liang, Yan Xue-Qing. Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma. Acta Physica Sinica, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [4] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [5] Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability. Acta Physica Sinica, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [6] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] Sun Wei, An Wei-Ming, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability. Acta Physica Sinica, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [8] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [9] Xin Jian-Ting, Zhao Yong-Qiang, Chu Gen-Bai, Xi Tao, Shui Min, Fan Wei, He Wei-Hua, Gu Yu-Qiu. Experimental investigation of tin fragments mixing with gas subjected to laser driven shock. Acta Physica Sinica, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [10] Xu Jia-Di, Jiang Zhi-Xiong, Gong Xiao-Long. A jet acceleration mechanism for the black hole disk system. Acta Physica Sinica, 2017, 66(3): 039701. doi: 10.7498/aps.66.039701
    [11] Li Yan-Fei, Li Yu-Tong, Zhu Bao-Jun, Yuan Da-Wei, Li Fang, Zhang Zhe, Zhong Jia-Yong, Wei Hui-Gang, Pei Xiao-Xing, Liu Chang, Yuan Xiao-Xia, Zhao Jia-Rui, Han Bo, Liao Guo-Qian, Lu Xin, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, An Hong-Hai, Huang Xiu-Guang, Zhao Gang, Zhang Jie. Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock. Acta Physica Sinica, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [12] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, He Lin. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [13] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [14] Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia. Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection. Acta Physica Sinica, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [15] Guo Fu-Ming, Song Yang, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. The dynamic process of two-electron atom irradiated by intense laser pulse using time dependent quantum Monte Carlo method. Acta Physica Sinica, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [16] Xin Jian-Ting, Gu Yu-Qiu, Li Ping, Luo Xuan, Jiang Bai-Bin, Tan Fang, Han Dan, Wu Yin-Zhong, Zhao Zong-Qing, Shu Jing-Qin, Zhang Bao-Han. Study on metal ejection under laser shock loading. Acta Physica Sinica, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [17] Zhang Wen. Micro-gravity effect in a magnetic field. Acta Physica Sinica, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [18] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [19] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [20] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
Metrics
  • Abstract views:  3547
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2023
  • Accepted Date:  14 March 2023
  • Available Online:  22 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回
Baidu
map