-
Nonstoichiometric AgSbTe2+x (x=0—0.05) compounds have been prepared by combining melting-quench and spark plasma sintering. The effects of excessive Te on thermoelectric properties were investigated at 300 K to 600 K. Results indicated that the concentration of Ag+ ion vacancy, hole concentration and electrical conductivity increase remarkably with the increasing amount of Te, while the Seebeck coefficient decreases. In addition, the total thermal conductivity of the samples increases slightly as Te content increases. The lattice thermal conductivities of nonstoichiometric samples range from 0.32 to 0.49 W/mK, which are less than the value of the stoichiometric sample, and close to the theoretical minimum thermal conductivity. For AgSbTe2.01 (x=0.01), a maximum figure of merit ZT=1.41 was obtained at 562K. This value is 15% higher than that of the stoichiometric sample.
-
Keywords:
- AgSbTe2 /
- nonstoichiometric /
- thermoelectric properties /
- thermal conductivity
[1] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597
[2] Harman T C, Walsh M P, Laforge B E, Turner G W 2005 J. Electron Mater. 34 L19
[3] Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229
[4] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
[5] Yang S H, Zhu T J, T Sun, J He, Zhang S N, Zhao X B 2008 Nanotechnology 19 245707
[6] Li H, Tang X, Su X, Zhang Q 2008 Appl. Phys. Lett. 92 202114
[7] Su X L, Tang X F, Li H, Deng S K 2008 Acta Phys. Sin. 57 6488 (in Chinese) [苏贤礼、唐新峰、李 涵、邓书康 2008 57 6488]
[8] Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 (in Chinese) [熊 冲、邓书康、唐新峰、祁 琼 2008 57 1190]
[9] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[10] Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901
[11] Hockings E F 1959 J. Phys. Chem. Solids. 10 341
[12] Wernick J H, Benson K E 1957 J. Phys. Chem. Solids. 3 157
[13] Rosi F D, Hockings E F, Lindenblad N E 1961 RCA Rev. 22 82
[14] Wang H, Li J, Zhou M, Sui T 2008 Appl. Phys. Lett. 93 202106
[15] Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M, Kanatzidis M G 2008 Phys .Rev. B 77 245203
[16] Jovovic V, Heremans J 2009 J. Electron Mater. 38 1504
[17] Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184
[18] Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202
[19] Wolfe R, Wernick J, Haszko S 1960 J. Appl. Phys. 31 1959
[20] Sugar J D, Medlin D L 2009 J. Alloys Comp. 478 75
[21] Armstrong R W, Jr J W F, Tiller W A 1960 J. Appl. Phys. 31 1954
[22] Zhu G H, Lee H, Lan Y C, Wang X W, G Joshi, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F 2009 Phys. Rev. Lett. 102 196803
[23] Snyder G J, Toberer E S 2008 Nature Mater. 7 105
[24] Pei Y, Morelli D T 2009 Appl. Phys. Lett. 94 122112
[25] Hoang K, Mahanti S D, Salvador J R, Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403
[26] Su T, Jia X, Ma H A, Yu F R, Tian Y J, Zuo G H, Zheng Y J, Jiang Y P, Dong D, Deng L, Qin B, Zheng S Z 2009 J. Appl. Phys. 105 073713
[27] Jovovic V, Heremans J P 2008 Phys. Rev. B 77 245204
[28] David G C, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131
-
[1] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597
[2] Harman T C, Walsh M P, Laforge B E, Turner G W 2005 J. Electron Mater. 34 L19
[3] Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229
[4] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
[5] Yang S H, Zhu T J, T Sun, J He, Zhang S N, Zhao X B 2008 Nanotechnology 19 245707
[6] Li H, Tang X, Su X, Zhang Q 2008 Appl. Phys. Lett. 92 202114
[7] Su X L, Tang X F, Li H, Deng S K 2008 Acta Phys. Sin. 57 6488 (in Chinese) [苏贤礼、唐新峰、李 涵、邓书康 2008 57 6488]
[8] Xiong C, Deng S K, Tang X F, Qi Q, Zhang Q J 2008 Acta Phys. Sin. 57 1190 (in Chinese) [熊 冲、邓书康、唐新峰、祁 琼 2008 57 1190]
[9] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[10] Morelli D T, Jovovic V, Heremans J P 2008 Phys. Rev. Lett. 101 035901
[11] Hockings E F 1959 J. Phys. Chem. Solids. 10 341
[12] Wernick J H, Benson K E 1957 J. Phys. Chem. Solids. 3 157
[13] Rosi F D, Hockings E F, Lindenblad N E 1961 RCA Rev. 22 82
[14] Wang H, Li J, Zhou M, Sui T 2008 Appl. Phys. Lett. 93 202106
[15] Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M, Kanatzidis M G 2008 Phys .Rev. B 77 245203
[16] Jovovic V, Heremans J 2009 J. Electron Mater. 38 1504
[17] Ragimov S S, Aliev S A 2007 Inorg. Mater. 43 1184
[18] Wojciechowski K T, Schmidt M 2009 Phys. Rev. B 79 184202
[19] Wolfe R, Wernick J, Haszko S 1960 J. Appl. Phys. 31 1959
[20] Sugar J D, Medlin D L 2009 J. Alloys Comp. 478 75
[21] Armstrong R W, Jr J W F, Tiller W A 1960 J. Appl. Phys. 31 1954
[22] Zhu G H, Lee H, Lan Y C, Wang X W, G Joshi, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F 2009 Phys. Rev. Lett. 102 196803
[23] Snyder G J, Toberer E S 2008 Nature Mater. 7 105
[24] Pei Y, Morelli D T 2009 Appl. Phys. Lett. 94 122112
[25] Hoang K, Mahanti S D, Salvador J R, Kanatzidis M G 2007 Phys. Rev. Lett. 99 156403
[26] Su T, Jia X, Ma H A, Yu F R, Tian Y J, Zuo G H, Zheng Y J, Jiang Y P, Dong D, Deng L, Qin B, Zheng S Z 2009 J. Appl. Phys. 105 073713
[27] Jovovic V, Heremans J P 2008 Phys. Rev. B 77 245204
[28] David G C, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131
计量
- 文章访问数: 10064
- PDF下载量: 1084
- 被引次数: 0