-
Bi2Te3-based compounds are the only commercially available thermoelectric materials, yet their low-temperature performance below 300 K remains underdeveloped. This study systematically explores the effects of Bi/Sb ratio modulation and Se substitution on the electrical and thermal transport properties of BixSb2-xTe3 and Bi0.4Sb1.6Te3-ySey materials. The research aims to optimize their thermoelectric performance in cryogenic regions through combined bandgap tuning and defect engineering. Materials were synthesized using a melt-quenching and spark plasma sintering process, followed by phase analysis via X-ray diffraction and microstructural characterization by electron probe microanalysis. First-principles calculations and Hall effect measurements were employed to investigate defect formation mechanisms and carrier transport behavior. In the BixSb2-xTe3 system, increasing Bi content reduced the bandgap from 0.168 eV for Bi0.4Sb1.6Te3 to 0.113 eV for Bi0.58Sb1.42Te3, shifting the peak ZT temperature to lower ranges. However, enhanced alloy scattering degraded carrier mobility from 332 to 109 cm2/(V·s) and power factor from 4.58 to 1.12 mW/(m·K2). To address this, Se was substituted into the Te lattice of Bi0.4Sb1.6Te3. First-principles calculations revealed that Se substitution reduced the formation energy of SeTe + BiSb complexes, effectively suppressing SbTe antisite defects. This resulted in a carrier concentration decrease from 3.32×1019 to 2.64×1019 cm-3 while maintaining high mobility at 279 cm2/(V·s). Concurrently, Se-induced point defects enhanced phonon scattering, lowering lattice thermal conductivity by 17 % from 0.46 to 0.38 W/(m·K). Bi0.4Sb1.6Te2.97Se0.03 sample achieved a ZT value of 0.93 at 220 K, representing a 16 % improvement over the pristine Bi0.4Sb1.6Te3 sample with a ZT value of 0.80. The peak ZT increased from 1.17 to 1.31 at 350 K, demonstrating a 12 % enhancement. These improvements arise from the synergistic effects of band engineering, where flattened valence band edges increased effective mass, and defect engineering, which suppressed antisite defects and strengthened phonon scattering. This work provides a dual optimization strategy for BiSbTe-based materials, balancing bandgap reduction with defect control to improve cryogenic performance. The findings are particularly relevant for applications in infrared detectors and multistage thermoelectric cooling systems.
-
Keywords:
- Bi2Te3-based compounds /
- low-temperature thermoelectric properties /
- band engineering /
- defect engineering
-
[1] Han Y N, Zhang A K 2022 Sci. Rep. 12 2349
[2] Tong X, Qiu J, Li J P, Xie K Y, Chen J Y, Huai Y, Li S F, Huang Y B, Dong W 2024Cryogenics 143 103929
[3] Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021Science 373 556
[4] Rogalski A, Martyniuk P, Kopytko M, Hu W D 2021Appl. Sci. 11 501
[5] Tang J, Ni H, Peng R L, Wang N, Zuo L 2023J. Power. Sources. 562 232785
[6] Sun J C, Zhang Y, Fan Y T, Tang X F, Tan G J 2022Chem. Eng. J. 431 133699
[7] Peng G Y, Hu L, Qu W B, Zhang C L, Li S R, Liu Z Y, Liu J C, Guo S W, Xiao Y, Gao Z B, Zhang Z, Zhang Y, Wu H J, Pennycook S J, Sun J, Ding X D 2023Interdiscip. Mater. 2 30
[8] Huang Y L, Lyu T, Zeng M T, Wang M R, Yu Y, Zhang C H, Liu F S, Hong M, Hu L P 2024Interdiscip. Mater. 3 607
[9] Hu C L, Xia K Y, Fu C G, Zhao X B, Zhu T J 2022Energy Environ. Sci. 15 1406
[10] Zhang Y, Sun J C, Shuai J, Tang X F, Tan G J 2021Mater. Today Phys. 19 100405
[11] Liu Z T, Hong T, Xu L Q, Wang S N, Gao X, Chang C, Ding X D, Xiao Y, Zhao L D 2023Interdiscip. Mater. 2 161
[12] Choi S, Han U, Cho H, Lee H 2018Appl. Therm. Eng. 132 560
[13] Reddy B V K, Barry M, Li J, Chyu M K 2014Energy Conv. Manag. 77 458
[14] Yang D W, Xing Y B, Wang J, Hu K, Xiao Y N, Tang K C, Lyu J N, Li J H, Liu Y T, Zhou P, Yu Y, Yan Y G, Tang X F 2024Interdiscip. Mater. 3 326
[15] Feng J H, Li J, Liu R H 2024Nano Energy 126 109651
[16] Lyu J N, Yang D W, Liu Y T, Li J H, Zhang Z N, Li Z M, Liu M Y, Liu W, Ren Z G, Liu H J, Wu J S, Tang X F, Yan Y G 2024ACS Appl. Mater. Interfaces. 16 16505
[17] Mao J, Chen G, Ren Z F 2021Nat. Mater. 20 454
[18] Luo T T, Wang S Y, Li H, Tang X F 2013Intermetallics 32 96
[19] Chen Z, Zhou M, Huang R J, Song C M, Zhou Y, Li L F 2012J. Alloy. Compd. 511 85
[20] Combe E, Funahashi R, Takeuchi T, Barbier T, Yubuta K 2017J. Alloy. Compd. 692 563
[21] Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000Science 287 1024
[22] Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111
[23] Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024Acta Phys. Sin. 73 097101(in Chinese) [李睿英,罗婷婷,李貌,陈硕,鄢永高,吴劲松,苏贤礼,张清杰,唐新峰2024 73 097101]
[24] Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023Acta Phys. Sin. 72 097101(in Chinese) [李强,陈硕,刘可可,鲁志强,胡芹,冯丽萍,张清杰,吴劲松,苏贤礼,唐新峰2023 72 097101]
[25] Chen S, Luo T T, Yang Z, Zhong S L, Su X L, Yan Y G, Wu J S, Poudeu P F, Zhang Q J, Tang X F 2024Mater. Today Phys. 46 101524
[26] Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 381311(in Chinese) [鲁志强,刘可可,李强,胡芹,冯丽萍,张清杰,吴劲松,苏贤礼,唐新峰2023无机材料学报38 1331]
[27] Goldsmid H J, Sharp J W 1999 J. Electro. Mater. 28 869
[28] Yang J, Morelli D T, Meisner G, Chen W, Dyck J, Uher C 2002Phys. Rev. B. 65 094115
[29] Wu G, Zhang Q, Fu Y T, Tan X J, Noudem J G, Zhang Z W, Cui C, Sun P, Hu H Y, Wu J H, Liu G Q, Jiang J 2023Adv. Funct. Mater. 33 2305686
[30] Lee K H, Kim S I, Lim J C, Cho J Y, Yang H, Kim H S 2022Adv. Funct. Mater. 32 2203852
[31] Xu B, Xia Q, Ma S S, Zhang J, Wang Y S, Li J F, Gu Z H, Yi L 2022FlatChem 34 100394
[32] Saberi Y, Sajjadi S A 2022J. Alloy. Compd. 904 163918
Metrics
- Abstract views: 126
- PDF Downloads: 3
- Cited By: 0