搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧原子在氟化石墨烯上扩散的第一性原理计算

杨海林 陈琦丽 顾星 林宁

引用本文:
Citation:

氧原子在氟化石墨烯上扩散的第一性原理计算

杨海林, 陈琦丽, 顾星, 林宁

First-principles calculations of O-atom diffusion on fluorinated graphene

Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning
PDF
HTML
导出引用
  • 石墨烯的氟化是改善石墨烯涂层腐蚀防护能力的有效方法之一. 本文使用NEB过渡态搜索方法研究了O原子在完全氟化石墨烯(CF)和部分氟化石墨烯(C4F)上的扩散和穿透行为, 分析F原子对石墨烯薄膜抗腐蚀能力的影响. 计算结果显示, F原子的吸附能有效抑制O原子在石墨烯上的扩散, C4F上O原子的表面扩散能垒显著提高, CF内O原子的水平扩散能垒更是高达2.69 eV. 而且F原子的增加使得C原子层对O原子穿透的阻隔能力减小, 在CF中, O原子的穿透主要受到F原子层的阻隔. 此外采用第一性原理计算方法计算了纯石墨烯、CF和C4F薄膜与Cu(111)表面的界面粘附功以及电子结构. 计算表明, 相比于纯石墨烯, CF和C4F能更好地与基底结合, 界面粘附功随着F原子的吸附浓度增大而提高. Cu/C4F和Cu/CF界面的电荷转移均增加, 其中Cu/C4F界面的电荷转移更多, C4F与Cu(111)表面的部分Cu原子生成Cu—C键.
    Fluorination of graphene is one of the most effective methods to improve the corrosion protection of graphene coatings. In this work, the diffusion and penetration behaviors of O atoms on fully fluorinated graphene (CF) and partially fluorinated graphene (C4F) are investigated by using the method of searching for NEB transition state . The effects of F atoms on the corrosion resistance of fluorinated graphene films are also analyzed r. The results show that the adsorption of F atoms can effectively inhibit the diffusion of O atoms on graphene. On C4F, the F atoms are distributed in a para-top position, which greatly increases the surface diffusion energy barrier of O atoms. Moreover, it is difficult for the adsorbed O atoms to diffuse to different sp2 C rings through the obstruction of F atoms. The energy barrier of the horizontal diffusion of O atoms even reaches 2.69 eV in CF. And with the increase of F atoms, the stable structure of graphene is gradually destroyed, the ability of C-atom layer to bar the penetration behaviors of O atoms decreases greatly. Furthermore, the interfacial adhesion work of pure graphene, CF and C4F films with Cu(111) surfaces are calculated, as well as the electronic structures of the composite interface are investigated by using first-principles calculations. The interfacial adhesion work of the Cu/G, Cu/C4F and Cu/CF interfaces are 2.626 J/m2, 3.529 J/m2 and 3.559 J/m2, respectively. The calculations show that the bonding of C4F and C4F with Cu substrate are stronger than pure graphene with Cu substrate, and the interfacial adhesion work increases with the augment of F atom adsorption concentration. The calculation of the density of states also conforms that the interaction between Cu and C atoms of the Cu/C4F interface is stronger than that at the Cu/CF interface. Bader charge analysis shows that the charge transfer at the Cu/C4F interface and the Cu/CF interface increase comparing with that at the Cu/G interface, and Cu/C4F interface has more charge transfer, in which Cu—C bonds are formed.
      通信作者: 陈琦丽, chenqili@cug.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41827808)和云浮市科技计划项目(批准号: 2021A090101, 2019B090502)资助的课题.
      Corresponding author: Chen Qi-Li, chenqili@cug.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41827808) and Yunfu Science and Technology Plan Program, China (Grant Nos. 2021A090101, 2019B090502).
    [1]

    Nine M J, Cole M A, Tran D N H, Losic D 2015 J. Mater. Chem. A Mater. 3 12580Google Scholar

    [2]

    Sun W, Yang Y J, Yang Z Q, Wang L D, Wang J, Xu D K, Liu G C 2021 J. Mater. Sci. Mater. Med. 91 278

    [3]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458Google Scholar

    [4]

    Tsetseris L, Pantelides S T 2014 Carbon 67 58Google Scholar

    [5]

    Miao M, Nardelli M B, Wang Q, Liu Y 2013 Phys. Chem. Chem. Phys. 15 16132Google Scholar

    [6]

    Zhang R Y, Yu X, Yang Q W, Cui G, Li Z L 2021 Constr. Build. Mater. 294 123613Google Scholar

    [7]

    Topsakal M, Sahin H, Ciraci S 2012 Phys. Rev. B 85 155445Google Scholar

    [8]

    赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 70 095208Google Scholar

    Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Qu Q R 2021 Acta Phys. Sin. 70 095208Google Scholar

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Rogers B R, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [10]

    郭晓蒙, 青芳竹, 李雪松 2021 70 098102Google Scholar

    Guo X M, Qing F Z, Li X S 2021 Acta Phys. Sin. 70 098102Google Scholar

    [11]

    Cui C L, Lim A T O, Huang J X 2017 Nat. Nanotechnol. 12 834Google Scholar

    [12]

    Jihyung L, Diana B 2018 Carbon 126 225Google Scholar

    [13]

    Ding J H, Zhao H R, Zhao X P, Xu BY, Yu H B 2019 J. Mater. Chem. 7 13511Google Scholar

    [14]

    Boukhvalov D W, Kurmaev E Z, Urbańczyk E, Dercz G, Stolarczyk A, Simka W, Kukharenko A I, Zhidkov I S, Slesarev A I, Zatsepin A F, Cholakh S O 2018 Thin Solid Films 665 99Google Scholar

    [15]

    Ankit Y, Rajeev K, Pratap P U, Balaram S 2021 Carbon 173 350Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    丁锐, 陈思, 吕静, 桂泰江, 王晓, 赵晓栋, 刘杰, 李秉钧, 宋立英, 李伟华 2019 化学学报 77 1140

    Ding R, Chen S, Lv J, Gui T J, Wang X, Zhao X D, Liu J, Li B J, Song L Y, Li W H 2019 Acta Chem. Sin. 77 1140

    [18]

    Karolina O, Marek L 2020 Coatings 10 883Google Scholar

    [19]

    Cui G, Bi Z X, Zhang R Y, Liu J G, Yu X, Li Z L 2019 Chem. Eng. J. 373 104Google Scholar

    [20]

    Li Q, Zheng S X, Pu J B, Sun J H, Huang L F, Wang L P, Xue Q J. 2019 Phys. Chem. Chem. Phys. 21 12121Google Scholar

    [21]

    Sadeghi A, Neek Amal M, Berdiyorov G R, Peeters F M 2015 Phys. Rev. B 91 014304Google Scholar

    [22]

    Shen L, Li Y, Zhao W J, Wang K, Ci X J, Wu Y M, Liu G, Liu C, Fang Z W 2020 J. Mater. Sci. Technol. 44 121Google Scholar

    [23]

    窦宝捷, 付英奎, 高秀磊, 张颖君, 林修洲, 王兆华, 马兵, 方治文 2020 表面技术 49 241

    Dou B J, Fu Y K, Gao X L, Zhang Y J, Lin X Z, Wang Z H, Ma B, Fang Z W 2020 Surf. Tech. 49 241

    [24]

    Wu Y M, Jiang F W, Qiang Y J, Zhao W J 2021 Carbon 176 39Google Scholar

    [25]

    Yao W J, Zhou S G, Wang Z X, Lu Z B, Hou C J 2020 Appl. Surf. Sci. 499 143962Google Scholar

    [26]

    Widjaja H, Jiang Z T, Altarawneh M, Yin C Y, Goh B M, Mondinos N, Amri A, Dlugogorski B Z 2016 Appl. Surf. Sci. 373 65Google Scholar

    [27]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001Google Scholar

    [28]

    Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, Stubos A K, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M 2010 Small 6 2885Google Scholar

    [29]

    Samarakoon D K, Chen Z F, Nicolas C, Wang X Q 2011 Small 7 965Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [33]

    Lee K, Murray É D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [34]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [35]

    吴迪, 杨永, 章小峰, 黄贞益, 王昭东 2022 71 086301Google Scholar

    Wu D, Yang Y, Zhang X F, Huang Z Y, Wang Z D 2022 Acta Phys. Sin. 71 086301Google Scholar

    [36]

    Chronopoulos D D, Bakandritsos A, Pykal M, Zbořil R, Otyepka M 2017 Appl. Mater. Today 9 60

    [37]

    Li Y F, Pantoja B A, Chen Z F. 2014 J. Chem. Theory. Comput. 10 1265Google Scholar

    [38]

    余金中, 王杏华 2001 物理 3 169Google Scholar

    Yu J Z, Wang X H 2001 Physics 3 169Google Scholar

    [39]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

  • 图 1  优化后的晶格结构 (a) G; (b) C4F; (c) CF

    Fig. 1.  Optimized lattice structure: (a) G; (b) C4F; (c) CF.

    图 2  优化前的界面模型 (a) Cu/G界面; (b) Cu/C4F界面; (c) Cu/CF界面

    Fig. 2.  Interface model before optimization: (a) Cu/G interface; (b) Cu/C4F interface; (c) Cu/CF interface.

    图 3  O原子在G相邻桥位上的扩散的能垒图

    Fig. 3.  The diffusion barrier diagram of diffusion of O atom on the adjacent bridge site of G.

    图 4  (a) O原子在C4F无F面的扩散路径; (b) O原子在C4F有F面的扩散路径

    Fig. 4.  (a) the diffusion paths of O atom on the F-free surface of C4F; (b) the diffusion paths of O atom on the F adsorbed surface of C4F.

    图 5  O原子在C4F无F面上扩散的能垒图 (a) 路径1; (b) 路径2; (c) 路径3; (d) 路径4

    Fig. 5.  Diffusion barrier diagram of O atom diffusion on the F-free surface of C4F: (a) Path 1; (b) path 2; (c) path 3; (d) path 4.

    图 6  O原子在C4F有F面上扩散的能垒图 (a) 路径5; (b) 路径6; (c) 路径7

    Fig. 6.  Diffusion barrier diagram of O atom diffusion on the F adsorbed surface of C4F: (a) Path 5; (b) path 6; (c) path 7

    图 7  O原子穿透 (a) G; (b) C4F的能垒图

    Fig. 7.  Diffusion barrier diagram of O atom penetrating: (a) G; (b) C4F.

    图 8  (a) O原子穿透CF的F原子层到达C原子层的能垒图; (b) O原子在CF内相邻桥位上的扩散的能垒图; (c) O原子在CF内沿空心位扩散的能垒图

    Fig. 8.  (a) Diffusion barrier diagram of O atom penetrating the F atomic layer of CF to the C atomic layer; (b) diffusion barrier diagram of O atom diffusion on the adjacent bridge site in CF; (c) diffusion barrier diagram of O atom diffusion along the hollow site in CF.

    图 9  O原子沿最佳扩散路径扩散的DOS图 (a) G表面初始态和过渡态的DOS图; (b) C4F有F面初始态和过渡态的DOS图; (c) C4F无F面初始态和过渡态的DOS图; (d) CF内初始态和过渡态的DOS图

    Fig. 9.  DOS diagram of O atom diffusion along the optimal diffusion path: (a) DOS diagram of initial state and transition state of G surface; (b) DOS diagram of initial state and transition state on the F adsorbed surface of C4F; (c) DOS diagram of initial state and transition state on the F-free surface of C4F; (d) DOS diagram of initial state and transition state in CF.

    图 10  优化后的界面模型 (a) Cu/G界面; (b) Cu/C4F界面; (c) Cu/CF界面

    Fig. 10.  Optimized interface model: (a) Cu/G nterface; (b) Cu/C4F interface; (c) Cu/CF interface.

    图 11  Cu/G、Cu/C4F和Cu/CF界面的DOS图, 虚线为费米能级

    Fig. 11.  DOS diagram of Cu/G, Cu/C4F and Cu/CF interfaces.

    图 12  3种界面的轨道哈密顿分布(-COHP), 费米能级位于0 eV

    Fig. 12.  Crystal orbital Hamilton populations (-COHP) of three interfaces, the Fermi level is at 0 eV

    表 A1  O原子在C4F不同位置吸附的能量数据

    Table A1.  Energy data of O atom adsorption at different positions of C4F.

    O原子吸附位置C4F
    有F面/eV无F面/eV
    桥位–325.31–326.67
    顶位–323.89–325.23
    空心位H1–321.96–322.36
    空心位H2–321.92–323.25
    下载: 导出CSV

    表 A2  O原子在CF内不同位置吸附的能量数据

    Table A2.  Energy data of O atom adsorption at different positions in CF.

    O原子吸附位置CF内/eV
    桥位–413.70
    空心位–406.10
    下载: 导出CSV
    Baidu
  • [1]

    Nine M J, Cole M A, Tran D N H, Losic D 2015 J. Mater. Chem. A Mater. 3 12580Google Scholar

    [2]

    Sun W, Yang Y J, Yang Z Q, Wang L D, Wang J, Xu D K, Liu G C 2021 J. Mater. Sci. Mater. Med. 91 278

    [3]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458Google Scholar

    [4]

    Tsetseris L, Pantelides S T 2014 Carbon 67 58Google Scholar

    [5]

    Miao M, Nardelli M B, Wang Q, Liu Y 2013 Phys. Chem. Chem. Phys. 15 16132Google Scholar

    [6]

    Zhang R Y, Yu X, Yang Q W, Cui G, Li Z L 2021 Constr. Build. Mater. 294 123613Google Scholar

    [7]

    Topsakal M, Sahin H, Ciraci S 2012 Phys. Rev. B 85 155445Google Scholar

    [8]

    赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 70 095208Google Scholar

    Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Qu Q R 2021 Acta Phys. Sin. 70 095208Google Scholar

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Rogers B R, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [10]

    郭晓蒙, 青芳竹, 李雪松 2021 70 098102Google Scholar

    Guo X M, Qing F Z, Li X S 2021 Acta Phys. Sin. 70 098102Google Scholar

    [11]

    Cui C L, Lim A T O, Huang J X 2017 Nat. Nanotechnol. 12 834Google Scholar

    [12]

    Jihyung L, Diana B 2018 Carbon 126 225Google Scholar

    [13]

    Ding J H, Zhao H R, Zhao X P, Xu BY, Yu H B 2019 J. Mater. Chem. 7 13511Google Scholar

    [14]

    Boukhvalov D W, Kurmaev E Z, Urbańczyk E, Dercz G, Stolarczyk A, Simka W, Kukharenko A I, Zhidkov I S, Slesarev A I, Zatsepin A F, Cholakh S O 2018 Thin Solid Films 665 99Google Scholar

    [15]

    Ankit Y, Rajeev K, Pratap P U, Balaram S 2021 Carbon 173 350Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    丁锐, 陈思, 吕静, 桂泰江, 王晓, 赵晓栋, 刘杰, 李秉钧, 宋立英, 李伟华 2019 化学学报 77 1140

    Ding R, Chen S, Lv J, Gui T J, Wang X, Zhao X D, Liu J, Li B J, Song L Y, Li W H 2019 Acta Chem. Sin. 77 1140

    [18]

    Karolina O, Marek L 2020 Coatings 10 883Google Scholar

    [19]

    Cui G, Bi Z X, Zhang R Y, Liu J G, Yu X, Li Z L 2019 Chem. Eng. J. 373 104Google Scholar

    [20]

    Li Q, Zheng S X, Pu J B, Sun J H, Huang L F, Wang L P, Xue Q J. 2019 Phys. Chem. Chem. Phys. 21 12121Google Scholar

    [21]

    Sadeghi A, Neek Amal M, Berdiyorov G R, Peeters F M 2015 Phys. Rev. B 91 014304Google Scholar

    [22]

    Shen L, Li Y, Zhao W J, Wang K, Ci X J, Wu Y M, Liu G, Liu C, Fang Z W 2020 J. Mater. Sci. Technol. 44 121Google Scholar

    [23]

    窦宝捷, 付英奎, 高秀磊, 张颖君, 林修洲, 王兆华, 马兵, 方治文 2020 表面技术 49 241

    Dou B J, Fu Y K, Gao X L, Zhang Y J, Lin X Z, Wang Z H, Ma B, Fang Z W 2020 Surf. Tech. 49 241

    [24]

    Wu Y M, Jiang F W, Qiang Y J, Zhao W J 2021 Carbon 176 39Google Scholar

    [25]

    Yao W J, Zhou S G, Wang Z X, Lu Z B, Hou C J 2020 Appl. Surf. Sci. 499 143962Google Scholar

    [26]

    Widjaja H, Jiang Z T, Altarawneh M, Yin C Y, Goh B M, Mondinos N, Amri A, Dlugogorski B Z 2016 Appl. Surf. Sci. 373 65Google Scholar

    [27]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001Google Scholar

    [28]

    Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, Stubos A K, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M 2010 Small 6 2885Google Scholar

    [29]

    Samarakoon D K, Chen Z F, Nicolas C, Wang X Q 2011 Small 7 965Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [33]

    Lee K, Murray É D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [34]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [35]

    吴迪, 杨永, 章小峰, 黄贞益, 王昭东 2022 71 086301Google Scholar

    Wu D, Yang Y, Zhang X F, Huang Z Y, Wang Z D 2022 Acta Phys. Sin. 71 086301Google Scholar

    [36]

    Chronopoulos D D, Bakandritsos A, Pykal M, Zbořil R, Otyepka M 2017 Appl. Mater. Today 9 60

    [37]

    Li Y F, Pantoja B A, Chen Z F. 2014 J. Chem. Theory. Comput. 10 1265Google Scholar

    [38]

    余金中, 王杏华 2001 物理 3 169Google Scholar

    Yu J Z, Wang X H 2001 Physics 3 169Google Scholar

    [39]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究.  , 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [8] 陈淑年, 廖斌, 陈琳, 张志强, 沈永青, 王浩琦, 庞盼, 吴先映, 华青松, 何光宇. 基于磁过滤技术TiAlCN/TiAlN/TiAl复合体系腐蚀及摩擦学性能.  , 2020, 69(10): 107202. doi: 10.7498/aps.69.20200012
    [9] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算.  , 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [10] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算.  , 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [11] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究.  , 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [12] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究.  , 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [13] 孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇. HT-7装置液态锂限制器实验中锂的腐蚀与沉积特性的研究.  , 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [14] 徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明. 双空位掺杂氟化石墨烯的电子性质和磁性.  , 2014, 63(18): 186101. doi: 10.7498/aps.63.186101
    [15] 高潭华. 外来原子替代碳的氟化石墨烯的磁性和电子性质.  , 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [16] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [17] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算.  , 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [18] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] 刘贵立. 钛的腐蚀与钝化机理电子理论研究.  , 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
计量
  • 文章访问数:  4131
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-09-15
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-01-05

/

返回文章
返回
Baidu
map