Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of sharp edge of ring-groove-structures in SiC surface

Yu Zi-Heng Ma Chun-Hong Bai Shao-Xian

Citation:

Effect of sharp edge of ring-groove-structures in SiC surface

Yu Zi-Heng, Ma Chun-Hong, Bai Shao-Xian
PDF
HTML
Get Citation
  • To reduce the run-off of fluid in sealing system, especially in the multiphase medium and extreme operating conditions, it is necessary to investigate the wetting and spreading behavior in silicon carbon (SiC) sealing face. Considering the sealing performance, ring-grooved structures with a varying depth (h) and width (w) are fabricated on SiC substrates by laser marking machine. The radius of structure’ inner surface is 1.5 mm, less than the capillary length of water. Then, experimental equipment is designed to observe the profile and the spreading behaviors of droplet on the surface, and the wetting performance and pinning effect are discussed, and the influences of depth and width of ring-grooves on the wetting performance can be obtained. The results show that the contact angle (CA) and the advancing contact angle (ACA) of smooth SiC surface are 70° and 76.5°, respectively. And the values decrease to CA 50° and ACA 54° after laser processing, which may be due to the average roughness (Ra) increasing from 0.1 μm in smooth surface to 0.8 μm in laser machined surface, making the hydrophilic surface more hydrophilic. The CA on the edge of ring-grooves increases to 138.5°, the control of fluid can be realized. When the droplet spreads along the radius direction before reaching the edge of groove, its CA keeps 76.5°. Once it reaches the edge, the position of contact line remains constant or changes slowly along the wall of groove(we are more inclined to the latter), and thus making the CA increase with the droplet volume increasing, until reaching a maximum apparent contact angle (θmax). And θmax in the experiment is less than that from the Gibbs equation, which is perhaps because of the mechanical vibration, the roughness of the wall or the liquid viscosity effect. After that, the droplet collapses, and spreads along the groove area, or even flows over the outer edge of the ring groove. The influences of h and w of groove are then studied, showing that θmax first increases linearly and then tends to be stable with the increase of h, and the depth of groove has a critical value (hc) of 80 μm. When h < hc, the droplet moves along the wall to the bottom of groove, the droplet collapses after reaching the bottom under the surface tension function. However, when hhc, the droplet is in a stable condition, and collapses with the increase of volume. When h = 100 μm, a critical value of width (wc) of 40 μm exists for the geometrical relationships of ACA in wall between h and w. If w is too small, the droplet will contact the outer diameter of ring groove, which finally makes the droplet collapse and spread on the smooth surface. The present research can conduce to understanding the pinning effect in the solid edge and the spreading behavior of droplets in SiC surface.
      Corresponding author: Ma Chun-Hong, machunhong@126.com
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ19E050002), Project supported by the National Natural Science Foundation of China (Grant No. 51775504), and Project supported by the Fundamental Research Funds for the Universities of Education of Zhejiang Province (Grant No. 2019QN01)
    [1]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第171−200页

    Zhao Y P 2012 Surface and Interface Physical Mechanics (Beijing: Science Press) pp171−200 (in Chinese)

    [2]

    Fang G, Amirfazli A 2012 Langmuir 28 9421Google Scholar

    [3]

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Chin. Phys. B 29 372Google Scholar

    [4]

    余剑武, 陆岳托, 罗红, 仝瑞庆, 宋金英 http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10]

    Yu J W, Lu Y T, Luo H, Tong R Q, Song J G http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10] (in Chinese)

    [5]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 67 156Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta. Phys. Sin. 67 156Google Scholar

    [6]

    焦云龙, 刘小君, 刘琨 2016 力学学报 48 353Google Scholar

    Jiao Y L, Liu X J, Liu K 2016 Chin. J. Theor. Appl. Mech. 48 353Google Scholar

    [7]

    雍佳乐, 杨青, 陈烽, 侯洵 2019 科学通报 64 1213Google Scholar

    Yong J L, Yang Q, Chen F, Hou X 2019 Chin. Sci. Bull. 64 1213Google Scholar

    [8]

    王鹏伟, 刘明杰, 江雷 2016 65 61Google Scholar

    Wang P W, Liu M J, Jiang L 2016 Acta. Phys. Sin. 65 61Google Scholar

    [9]

    Chang B, Shah A, Routa I, Lipsanen H, Zhou Q 2014 J. Micro-Bio. Robot. 9 1Google Scholar

    [10]

    Dejarld M, Nothern D, Millunchick J M 2014 J. Appl. Phys. 115 106Google Scholar

    [11]

    Hong W, Tang L J, Sun W X, Ji B W, Yang B, Liu J Q 2019 J. Microelectromech. S. 99 1Google Scholar

    [12]

    Shardt O, Waghmare P R, Derksen J J, Mitra S K 2014 RSC. Adv. 4 14781Google Scholar

    [13]

    Hu L, Wu M, Chen W Y, Xie H B, Fu X 2017 Exp. Therm. Fluid. Sci. 87 50Google Scholar

    [14]

    郑益华 2020 博士学位论文 (长春: 吉林大学)

    Zheng Y H 2020 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [15]

    Gibbs J W, Donnan F G, Haas A (edited by) 1936 A commentary on the scientific writings of J. Willard Gibbs (Vol.1) (New Harven: Yale University Press) pp675−676

    [16]

    Du J, Michielsen S, Lee H J 2010 Langmuir 26 16000Google Scholar

    [17]

    乔小溪, 张向军, 陈平, 田煜, 孟永钢 2020 69 205Google Scholar

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Acta. Phys. Sin. 69 205Google Scholar

    [18]

    Kim D, Jeong M, Kang K W, Ryu S 2020 Langmuir 36 6061Google Scholar

    [19]

    Wang Z L, Kui L, Zhao Y P 2019 J. Collid. Interf. Sci. 552 563Google Scholar

    [20]

    Ma B J, Shan L, Dogruoz B, Agonafer D 2019 Langmuir 35 12264Google Scholar

    [21]

    Tóth T, Ferraro D, Chiarello E, Pierno M, Mistura G, Bissacco G, Semprebon C 2011 Langmuir 27 4742Google Scholar

    [22]

    Oliver J F, Huh C, Mason S G 1977 J. Collid. Interf. Sci. 59 568Google Scholar

    [23]

    Zhang J, Gao X, Jiang L 2007 Langmuir 23 3230Google Scholar

    [24]

    Kalinin Y V, Berejnov V, Thorne R E 2009 Langmuir 25 5391Google Scholar

    [25]

    Tsoumpas Y, Dehaeck S, Galvagno M, Rednikov A, Ottevaere H 2014 Langmuir 30 11847Google Scholar

    [26]

    Mueller J, Haghparastmojaveri N, Alan T, Neild A 2013 Appl. Phys. Lett. 102 041605Google Scholar

    [27]

    Wang Z L, Chen E H, Zhao Y P 2018 Sci. China Tech. Sci. 61 309Google Scholar

    [28]

    Extrand C W 2005 Langmuir 21 10370Google Scholar

    [29]

    王茜, 韩素立, 郭峰, 李超 2019 摩擦学学报 39 340Google Scholar

    Wang Q, Han S L, Guo F, Li C 2019 Tribology 39 340Google Scholar

    [30]

    Young T 1805 Phil. Trans. 95 65Google Scholar

    [31]

    赵亚溥 2020 理性力学教程 (北京: 科学出版社) 第492页

    Zhao Y P 2020 Course of Rational Mechanics (Beijing: Science Press) p492 (in Chinese)

    [32]

    Mayama H, Nonomura Y 2011 Langmuir 27 3550Google Scholar

  • 图 1  实验装置原理图

    Figure 1.  Schematic diagram of experiment device.

    图 2  液滴在圆环形槽表面铺展原理图

    Figure 2.  Schematic diagram of droplet spreading on ring-grooved structures.

    图 3  圆环槽形貌示意图 (a) 表面形貌图; (b) 二维轮廓图(di = 3 mm, h = 100 μm, w = 1 mm)

    Figure 3.  Schematic diagram of ring groove topography: (a) Surface topography; (b) 2D contour map (di = 3 mm, h = 100 μm, w = 1 mm).

    图 4  SiC圆环槽表面接触角 (a) 光滑平面固态接触角; (b) 光滑表面前进接触角; (c) 织构表面固有接触角; (d) 织构表面前进接触角

    Figure 4.  SiC ring groove surface contact angle: (a)Smooth plane static contact angle; (b) smooth surface advancing contact angle; (c) static contact angle of textured surface; (d) advancing contact angle of textured surface.

    图 5  液滴在SiC圆环槽的铺展行为 (a)内表面前进液滴; (b) 内边缘前进液滴; (c) 内边缘临界液滴; (d) 破裂液滴

    Figure 5.  Spreading behavior of liquid drop in SiC ring groove: (a) Advancing drop on the inner surface; (b) advancing drop on inner edge; (c) inner edge critical drop; (d) breaking up.

    图 6  液滴在SiC圆环形槽内表面边缘处的接触角(h = 290 µm, w = 1 mm)

    Figure 6.  Contact angle of the droplet at the edge of the inner surface of the SiC circular groove (h = 290 µm, w = 1 mm).

    图 7  最大接触角随槽深的变化曲线(di =3 mm, w = 1 mm)

    Figure 7.  Variation curve of maximum contact angle with groove depth(di = 3 mm, w = 1 mm).

    图 8  最大接触角随槽宽的变化曲线

    Figure 8.  Variation curve of maximum contact angle with groove width.

    表 1  SiC圆环槽几何参数表

    Table 1.  Structural parameters of ring grooved on SiC surface.

    序号内径di/ mm槽深h/μm槽宽w/μm序号内径di/mm槽深h/μm槽宽w/μm
    132010002310020
    5040
    8060
    10080
    200100
    290200
    480
    620
    DownLoad: CSV
    Baidu
  • [1]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第171−200页

    Zhao Y P 2012 Surface and Interface Physical Mechanics (Beijing: Science Press) pp171−200 (in Chinese)

    [2]

    Fang G, Amirfazli A 2012 Langmuir 28 9421Google Scholar

    [3]

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Chin. Phys. B 29 372Google Scholar

    [4]

    余剑武, 陆岳托, 罗红, 仝瑞庆, 宋金英 http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10]

    Yu J W, Lu Y T, Luo H, Tong R Q, Song J G http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10] (in Chinese)

    [5]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 67 156Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta. Phys. Sin. 67 156Google Scholar

    [6]

    焦云龙, 刘小君, 刘琨 2016 力学学报 48 353Google Scholar

    Jiao Y L, Liu X J, Liu K 2016 Chin. J. Theor. Appl. Mech. 48 353Google Scholar

    [7]

    雍佳乐, 杨青, 陈烽, 侯洵 2019 科学通报 64 1213Google Scholar

    Yong J L, Yang Q, Chen F, Hou X 2019 Chin. Sci. Bull. 64 1213Google Scholar

    [8]

    王鹏伟, 刘明杰, 江雷 2016 65 61Google Scholar

    Wang P W, Liu M J, Jiang L 2016 Acta. Phys. Sin. 65 61Google Scholar

    [9]

    Chang B, Shah A, Routa I, Lipsanen H, Zhou Q 2014 J. Micro-Bio. Robot. 9 1Google Scholar

    [10]

    Dejarld M, Nothern D, Millunchick J M 2014 J. Appl. Phys. 115 106Google Scholar

    [11]

    Hong W, Tang L J, Sun W X, Ji B W, Yang B, Liu J Q 2019 J. Microelectromech. S. 99 1Google Scholar

    [12]

    Shardt O, Waghmare P R, Derksen J J, Mitra S K 2014 RSC. Adv. 4 14781Google Scholar

    [13]

    Hu L, Wu M, Chen W Y, Xie H B, Fu X 2017 Exp. Therm. Fluid. Sci. 87 50Google Scholar

    [14]

    郑益华 2020 博士学位论文 (长春: 吉林大学)

    Zheng Y H 2020 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [15]

    Gibbs J W, Donnan F G, Haas A (edited by) 1936 A commentary on the scientific writings of J. Willard Gibbs (Vol.1) (New Harven: Yale University Press) pp675−676

    [16]

    Du J, Michielsen S, Lee H J 2010 Langmuir 26 16000Google Scholar

    [17]

    乔小溪, 张向军, 陈平, 田煜, 孟永钢 2020 69 205Google Scholar

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Acta. Phys. Sin. 69 205Google Scholar

    [18]

    Kim D, Jeong M, Kang K W, Ryu S 2020 Langmuir 36 6061Google Scholar

    [19]

    Wang Z L, Kui L, Zhao Y P 2019 J. Collid. Interf. Sci. 552 563Google Scholar

    [20]

    Ma B J, Shan L, Dogruoz B, Agonafer D 2019 Langmuir 35 12264Google Scholar

    [21]

    Tóth T, Ferraro D, Chiarello E, Pierno M, Mistura G, Bissacco G, Semprebon C 2011 Langmuir 27 4742Google Scholar

    [22]

    Oliver J F, Huh C, Mason S G 1977 J. Collid. Interf. Sci. 59 568Google Scholar

    [23]

    Zhang J, Gao X, Jiang L 2007 Langmuir 23 3230Google Scholar

    [24]

    Kalinin Y V, Berejnov V, Thorne R E 2009 Langmuir 25 5391Google Scholar

    [25]

    Tsoumpas Y, Dehaeck S, Galvagno M, Rednikov A, Ottevaere H 2014 Langmuir 30 11847Google Scholar

    [26]

    Mueller J, Haghparastmojaveri N, Alan T, Neild A 2013 Appl. Phys. Lett. 102 041605Google Scholar

    [27]

    Wang Z L, Chen E H, Zhao Y P 2018 Sci. China Tech. Sci. 61 309Google Scholar

    [28]

    Extrand C W 2005 Langmuir 21 10370Google Scholar

    [29]

    王茜, 韩素立, 郭峰, 李超 2019 摩擦学学报 39 340Google Scholar

    Wang Q, Han S L, Guo F, Li C 2019 Tribology 39 340Google Scholar

    [30]

    Young T 1805 Phil. Trans. 95 65Google Scholar

    [31]

    赵亚溥 2020 理性力学教程 (北京: 科学出版社) 第492页

    Zhao Y P 2020 Course of Rational Mechanics (Beijing: Science Press) p492 (in Chinese)

    [32]

    Mayama H, Nonomura Y 2011 Langmuir 27 3550Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Liu Yuan-Feng, Li Bin-Cheng, Zhao Bin-Xing, Liu Hong. Detection of subsurface defects in silicon carbide bulk materials with photothermal radiometry. Acta Physica Sinica, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] Huang Yi-Hua, Jiang Dong-Liang, Zhang Hui, Chen Zhong-Ming, Huang Zheng-Ren. Ferromagnetism of Al-doped 6H-SiC and theoretical calculation. Acta Physica Sinica, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [5] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [6] Yang Shuai, Tang Xiao-Yan, Zhang Yu-Ming, Song Qing-Wen, Zhang Yi-Men. Influence of charge imbalance on breakdown voltage of 4H-SiC semi-superjunction VDMOSFET. Acta Physica Sinica, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [7] Gao Shang-Peng, Zhu Tong. Quasiparticle band structure calculation for SiC using self-consistent GW method. Acta Physica Sinica, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [8] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Zhang Xian-Jun, Chen Bin. Improvement in breakdown characteristics of 4H-SiC MESFET with a gate-drain surface epi-layer and optimization of the structure. Acta Physica Sinica, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [9] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [10] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [11] Zhang Yong, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Yang Yi-Tao. Study on nanohardness of helium-implanted 4H-SiC. Acta Physica Sinica, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [12] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [13] Jin Hua, An Li-Nan, Bu Fan-Liang, Li Li-Hua, Wang Rong, Yang Wei-You, Zhang Li-Gong. Study of ultraviolet photoluminescence from SiC nanorods. Acta Physica Sinica, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [14] Huang Wei, Chen Zhi-Zhan, Chen Bo-Yuan, Zhang Jing-Yu, Yan Cheng-Feng, Xiao Bing, Shi Er-Wei. Effect of hydrofluoric acid etching time on Ni/6H-SiC contacts. Acta Physica Sinica, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [15] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. The study of optimal fitting parameter for C 1s spectra of SiC surface. Acta Physica Sinica, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. Study on the chemical states of the surface of SiC epilayer. Acta Physica Sinica, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] Gao Jin-Xia, Zhang Yi-Men, Tang Xiao-Yan, Zhang Yu-Ming. Extraction of channel carrier concentration using C-V method for SiC buried-channel MOSFET. Acta Physica Sinica, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] Xu Peng-Shou, Li Yong-Hua, Pan Hai-Bin. First principle study on β-SiC(001)-(2×1) surface structure. Acta Physica Sinica, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] Shang Ye-Chun, Liu Zhong-Li, Wang Shu-Rui. Study on the reverse characteristics of Ti/6H-SiC Schottky contacts. Acta Physica Sinica, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] Jiang Zhen-Yi, Xu Xiao-Hong, Wu Hai-Shun, Zhang Fu-Qiang, Jin Zhi-Hao. . Acta Physica Sinica, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
Metrics
  • Abstract views:  5525
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2020
  • Accepted Date:  22 September 2020
  • Available Online:  02 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回
Baidu
map