-
With excellent physical, mechanical and processing properties, silicon carbide (SiC) has gradually become a preferred lightweight optical material for primary mirrors of large space optical systems. The subsurface defects generated during the preparation and processing procedures of SiC will affect the optical quality of the primary mirrors and the imaging performance of the corresponding optical systems employing the SiC primary mirror as well. In this work, photothermal radiation (PTR), a powerful nondestructive testing technique for detecting sub-surface defects of solid materials, is employed to characterize the subsurface defects of bulk SiC material for primary mirrors. Theoretically, three-dimensional one-layer and three-layer PTR theoretical models are developed to describe the defect-free and defect regions of an SiC bulk material. By analyzing the frequency dependence of PTR phase of the SiC bulk material with different defect depths, an empirical formula for estimating the defect depth via a characteristic frequency (appearing at the minimum of the PTR phase-frequency curve) defined thermal diffusion length is proposed, and simulation results show reasonably good agreement between the estimated and simulated defect depths in a depth range of 0.05–0.50 mm. Experimentally, an SiC bulk sample with a subsurface defect region is tested by the PTR via position scanning and modulation frequency scanning to obtain the position and frequency dependent PTR amplitude and phase. From the spatial distributions of PTR amplitude and phase measured at different frequencies and the phase difference frequency curves of measurement positions in the defect region, the depth and shape of the defect region are estimated and found to be in good agreement with the actual shape of the defect region, which is destructively measured via a depth profiler. The experimental and calculated results demonstrate that the PTR is capable of detecting non-destructively the subsurface defects of SiC bulk material. In addition, for subsurface defects with relatively flat interface, the defect depth can be determined accurately by the developed empirical formula. -
Keywords:
- SiC /
- subsurface defects /
- photothermal radiometry
[1] Jiang F, Liu Y, Yang Y, Huang Z R, Li D, Liu G L, Liu X J 2012 J. Nano Mater. 2012 7Google Scholar
[2] 韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰 2005 材料工程 06 59Google Scholar
Han Y Y, Zhang Y M, Han J C, Zhang J H, Yao W, Zhou Y F 2005 J. Mater. Eng. 06 59Google Scholar
[3] Sein E, Toulemont Y, Safa F, Duran M, Deny P, Chambure D, Passvogel T, Pilbratt G L 2003 SPIE IR Space Telescopes and Instruments 4850 606Google Scholar
[4] Rodolfo J P 2008 SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation 7018 70180EGoogle Scholar
[5] Kaneda H, Nakagawa T, Onaka T, Enya K, Kataza H, Makiuti S, Matsuhara H, Miyamoto M, Murakami H, Saruwatari H, Watarai H, Yui Y Y 2007 SPIE Optical Materials and Structures Technologies III 6666 666607Google Scholar
[6] Ebizuka N, Dai Y, Eto H, Lin W, Ebisuzaki T, Omori H, Handa T, Takami H, Takahashi Y 2003 SPIE Specialized Optical Developments in Astronomy 4842 329Google Scholar
[7] 周岩 2020 硕士学位论文 (长春: 长春工业大学)
Zhou Y 2020 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)
[8] Goela J S, Pickering M A, Tayler R L 1991 SPIE Optical Surfaces Resistant to Severe Environments 1330 25Google Scholar
[9] Zappellini G B, Martin H M, Miller S M, Smith B K, Cuerden B, Gasho V, Sosa R G, Montoya M, Riccardi A 2007 SPIE Astronomical Adaptive Optics Systems and Applications III 6991 66910UGoogle Scholar
[10] Xie J, Li Q, Sun J X, Li Y H 2015 J. Mater. Process. Tech. 222 422Google Scholar
[11] Yoo H K, Ko J H, Lim K Y, Kwon W T, Kim Y W 2015 Ceram. Int. 41 3490Google Scholar
[12] 李改灵, 孙开元, 冯仁余, 刘永军, 常林枫 2008 煤矿机械 12 99Google Scholar
Li G L, Sun K Y, Feng R Y, Liu Y J, Chang L F 2008 Coal Mine Machinery 12 99Google Scholar
[13] Neauport J, Ambard C, Cormont P, Darbois N, Destribats J, Luitot C, Rondeau O 2009 Opt. Express 17 20448Google Scholar
[14] Fahnle O W, Wons T, Koch E, Debruyne S, Meeder M, Booij S M, Braat J J M 2002 Applied Optics 41 4036Google Scholar
[15] Wuttig A, Steinert J, Duparre A, Truckenbrodt H 1999 SPIE Optical Fabrication and Testing 3739 369Google Scholar
[16] 刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗 2020 光学精密工程 28 50Google Scholar
Liu H J, Wang F R, Geng F, Zhou X Y, Huang J, Ye X, Jiang X D, Wu W D, Yang L M 2020 Optics Precis. Eng. 28 50Google Scholar
[17] Nordal P E, Kanstad S O 1979 Phys. Scr. 20 659Google Scholar
[18] Nakamura H, Tsubouchi K, Mikoshiba N 1985 Jpn. J. Appl. Phys. 24 222Google Scholar
[19] 李佩赞 1989 红外技术 11 97
Li P Z 1989 Infrared Technology 11 97
[20] 范春利, 孙丰瑞, 杨立 2005 激光与红外 35 504Google Scholar
Fan C L, Sun F R, Yang L 2005 Laser & Infrared 35 504Google Scholar
[21] 王心觉, 刘恒彪, 胡文祥 2017 激光与光电子学进展 54 101201
[22] 曹丹, 屈惠明 2013 激光与红外 43 513
Cao D, Qu H M 2013 Laser & Infrared 43 513
[23] Muramatsu M, Nakasumi S, Harada Y 2016 Adv. Compos. Mater. 25 541Google Scholar
[24] 马晓波, 王青青 2018 红外技术 40 85
Ma X B, Wang Q Q 2018 Infrared Technology 40 85
[25] 尹国应, 李爱珠 2020 光学与光电技术 18 18
Yin G Y, Li A Z 2020 Optics & Optoelectronic Technology 18 18
[26] 李佩赞, 王钦华 1994 仪器仪表学报 15 265Google Scholar
Li P Z, Wang Q H 1994 Chin. J. Sci. Instrum. 15 265Google Scholar
[27] 管国兴, 郑小明, 李佩赞 1988 红外研究 7A 201
Guan G X, Zheng X M, Li P Z 1988 Chin. J. Infrared Res. 7A 201
[28] 李佩赞, 王钦华 1996 物理 25 426
Li P Z, Wang Q H 1996 Physics 25 426
[29] 江海军, 陈力, 张淑仪 2014 无损检测 36 20
Jiang H J, Chen L, Zhang S Y 2014 Nondestructive Testing 36 20
[30] 江海军, 陈力, 苏清风, 邢建湘 2018 无损检测 40 15Google Scholar
Jiang H J, Chen L, Su Q F, Xing J X 2018 Nondestructive Testing 40 15Google Scholar
[31] 江海军, 陈力 2018 红外技术 40 946Google Scholar
Jiang H J, Chen L 2018 Infrared Technology 40 946Google Scholar
-
表 1 测量点的缺陷深度估算结果
Table 1. Estimated results of defect depth at measuring points.
点 坐标 缺陷深度/μm 误差 实际值 测量值 绝对误差/μm 相对误差/% 1 (21.0, 19.0) 371.6 392.0 20.4 5.5 2 (20.5, 19.5) 392.0 392.0 0 0 3 (20.2, 20.0) 291.0 276.0 15.0 5.2 4 (20.0, 20.4) 186.9 164.0 22.9 12.3 5 (21.3, 17.2) 80.9 58.5 21.7 27.7 6 (21.0, 18.1) 284.0 392.0 108.0 38.1 7 (20.6, 19.1) 413.9 560.0 146.0 35.5 8 (19.8, 20.8) 118.0 58.5 59.5 50.4 -
[1] Jiang F, Liu Y, Yang Y, Huang Z R, Li D, Liu G L, Liu X J 2012 J. Nano Mater. 2012 7Google Scholar
[2] 韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰 2005 材料工程 06 59Google Scholar
Han Y Y, Zhang Y M, Han J C, Zhang J H, Yao W, Zhou Y F 2005 J. Mater. Eng. 06 59Google Scholar
[3] Sein E, Toulemont Y, Safa F, Duran M, Deny P, Chambure D, Passvogel T, Pilbratt G L 2003 SPIE IR Space Telescopes and Instruments 4850 606Google Scholar
[4] Rodolfo J P 2008 SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation 7018 70180EGoogle Scholar
[5] Kaneda H, Nakagawa T, Onaka T, Enya K, Kataza H, Makiuti S, Matsuhara H, Miyamoto M, Murakami H, Saruwatari H, Watarai H, Yui Y Y 2007 SPIE Optical Materials and Structures Technologies III 6666 666607Google Scholar
[6] Ebizuka N, Dai Y, Eto H, Lin W, Ebisuzaki T, Omori H, Handa T, Takami H, Takahashi Y 2003 SPIE Specialized Optical Developments in Astronomy 4842 329Google Scholar
[7] 周岩 2020 硕士学位论文 (长春: 长春工业大学)
Zhou Y 2020 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)
[8] Goela J S, Pickering M A, Tayler R L 1991 SPIE Optical Surfaces Resistant to Severe Environments 1330 25Google Scholar
[9] Zappellini G B, Martin H M, Miller S M, Smith B K, Cuerden B, Gasho V, Sosa R G, Montoya M, Riccardi A 2007 SPIE Astronomical Adaptive Optics Systems and Applications III 6991 66910UGoogle Scholar
[10] Xie J, Li Q, Sun J X, Li Y H 2015 J. Mater. Process. Tech. 222 422Google Scholar
[11] Yoo H K, Ko J H, Lim K Y, Kwon W T, Kim Y W 2015 Ceram. Int. 41 3490Google Scholar
[12] 李改灵, 孙开元, 冯仁余, 刘永军, 常林枫 2008 煤矿机械 12 99Google Scholar
Li G L, Sun K Y, Feng R Y, Liu Y J, Chang L F 2008 Coal Mine Machinery 12 99Google Scholar
[13] Neauport J, Ambard C, Cormont P, Darbois N, Destribats J, Luitot C, Rondeau O 2009 Opt. Express 17 20448Google Scholar
[14] Fahnle O W, Wons T, Koch E, Debruyne S, Meeder M, Booij S M, Braat J J M 2002 Applied Optics 41 4036Google Scholar
[15] Wuttig A, Steinert J, Duparre A, Truckenbrodt H 1999 SPIE Optical Fabrication and Testing 3739 369Google Scholar
[16] 刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗 2020 光学精密工程 28 50Google Scholar
Liu H J, Wang F R, Geng F, Zhou X Y, Huang J, Ye X, Jiang X D, Wu W D, Yang L M 2020 Optics Precis. Eng. 28 50Google Scholar
[17] Nordal P E, Kanstad S O 1979 Phys. Scr. 20 659Google Scholar
[18] Nakamura H, Tsubouchi K, Mikoshiba N 1985 Jpn. J. Appl. Phys. 24 222Google Scholar
[19] 李佩赞 1989 红外技术 11 97
Li P Z 1989 Infrared Technology 11 97
[20] 范春利, 孙丰瑞, 杨立 2005 激光与红外 35 504Google Scholar
Fan C L, Sun F R, Yang L 2005 Laser & Infrared 35 504Google Scholar
[21] 王心觉, 刘恒彪, 胡文祥 2017 激光与光电子学进展 54 101201
[22] 曹丹, 屈惠明 2013 激光与红外 43 513
Cao D, Qu H M 2013 Laser & Infrared 43 513
[23] Muramatsu M, Nakasumi S, Harada Y 2016 Adv. Compos. Mater. 25 541Google Scholar
[24] 马晓波, 王青青 2018 红外技术 40 85
Ma X B, Wang Q Q 2018 Infrared Technology 40 85
[25] 尹国应, 李爱珠 2020 光学与光电技术 18 18
Yin G Y, Li A Z 2020 Optics & Optoelectronic Technology 18 18
[26] 李佩赞, 王钦华 1994 仪器仪表学报 15 265Google Scholar
Li P Z, Wang Q H 1994 Chin. J. Sci. Instrum. 15 265Google Scholar
[27] 管国兴, 郑小明, 李佩赞 1988 红外研究 7A 201
Guan G X, Zheng X M, Li P Z 1988 Chin. J. Infrared Res. 7A 201
[28] 李佩赞, 王钦华 1996 物理 25 426
Li P Z, Wang Q H 1996 Physics 25 426
[29] 江海军, 陈力, 张淑仪 2014 无损检测 36 20
Jiang H J, Chen L, Zhang S Y 2014 Nondestructive Testing 36 20
[30] 江海军, 陈力, 苏清风, 邢建湘 2018 无损检测 40 15Google Scholar
Jiang H J, Chen L, Su Q F, Xing J X 2018 Nondestructive Testing 40 15Google Scholar
[31] 江海军, 陈力 2018 红外技术 40 946Google Scholar
Jiang H J, Chen L 2018 Infrared Technology 40 946Google Scholar
Catalog
Metrics
- Abstract views: 4049
- PDF Downloads: 89
- Cited By: 0