Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculations of O-atom diffusion on fluorinated graphene

Yang Hai-Lin Chen Qi-Li Gu Xing Lin Ning

Citation:

First-principles calculations of O-atom diffusion on fluorinated graphene

Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning
PDF
HTML
Get Citation
  • Fluorination of graphene is one of the most effective methods to improve the corrosion protection of graphene coatings. In this work, the diffusion and penetration behaviors of O atoms on fully fluorinated graphene (CF) and partially fluorinated graphene (C4F) are investigated by using the method of searching for NEB transition state . The effects of F atoms on the corrosion resistance of fluorinated graphene films are also analyzed r. The results show that the adsorption of F atoms can effectively inhibit the diffusion of O atoms on graphene. On C4F, the F atoms are distributed in a para-top position, which greatly increases the surface diffusion energy barrier of O atoms. Moreover, it is difficult for the adsorbed O atoms to diffuse to different sp2 C rings through the obstruction of F atoms. The energy barrier of the horizontal diffusion of O atoms even reaches 2.69 eV in CF. And with the increase of F atoms, the stable structure of graphene is gradually destroyed, the ability of C-atom layer to bar the penetration behaviors of O atoms decreases greatly. Furthermore, the interfacial adhesion work of pure graphene, CF and C4F films with Cu(111) surfaces are calculated, as well as the electronic structures of the composite interface are investigated by using first-principles calculations. The interfacial adhesion work of the Cu/G, Cu/C4F and Cu/CF interfaces are 2.626 J/m2, 3.529 J/m2 and 3.559 J/m2, respectively. The calculations show that the bonding of C4F and C4F with Cu substrate are stronger than pure graphene with Cu substrate, and the interfacial adhesion work increases with the augment of F atom adsorption concentration. The calculation of the density of states also conforms that the interaction between Cu and C atoms of the Cu/C4F interface is stronger than that at the Cu/CF interface. Bader charge analysis shows that the charge transfer at the Cu/C4F interface and the Cu/CF interface increase comparing with that at the Cu/G interface, and Cu/C4F interface has more charge transfer, in which Cu—C bonds are formed.
      Corresponding author: Chen Qi-Li, chenqili@cug.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41827808) and Yunfu Science and Technology Plan Program, China (Grant Nos. 2021A090101, 2019B090502).
    [1]

    Nine M J, Cole M A, Tran D N H, Losic D 2015 J. Mater. Chem. A Mater. 3 12580Google Scholar

    [2]

    Sun W, Yang Y J, Yang Z Q, Wang L D, Wang J, Xu D K, Liu G C 2021 J. Mater. Sci. Mater. Med. 91 278

    [3]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458Google Scholar

    [4]

    Tsetseris L, Pantelides S T 2014 Carbon 67 58Google Scholar

    [5]

    Miao M, Nardelli M B, Wang Q, Liu Y 2013 Phys. Chem. Chem. Phys. 15 16132Google Scholar

    [6]

    Zhang R Y, Yu X, Yang Q W, Cui G, Li Z L 2021 Constr. Build. Mater. 294 123613Google Scholar

    [7]

    Topsakal M, Sahin H, Ciraci S 2012 Phys. Rev. B 85 155445Google Scholar

    [8]

    赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 70 095208Google Scholar

    Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Qu Q R 2021 Acta Phys. Sin. 70 095208Google Scholar

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Rogers B R, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [10]

    郭晓蒙, 青芳竹, 李雪松 2021 70 098102Google Scholar

    Guo X M, Qing F Z, Li X S 2021 Acta Phys. Sin. 70 098102Google Scholar

    [11]

    Cui C L, Lim A T O, Huang J X 2017 Nat. Nanotechnol. 12 834Google Scholar

    [12]

    Jihyung L, Diana B 2018 Carbon 126 225Google Scholar

    [13]

    Ding J H, Zhao H R, Zhao X P, Xu BY, Yu H B 2019 J. Mater. Chem. 7 13511Google Scholar

    [14]

    Boukhvalov D W, Kurmaev E Z, Urbańczyk E, Dercz G, Stolarczyk A, Simka W, Kukharenko A I, Zhidkov I S, Slesarev A I, Zatsepin A F, Cholakh S O 2018 Thin Solid Films 665 99Google Scholar

    [15]

    Ankit Y, Rajeev K, Pratap P U, Balaram S 2021 Carbon 173 350Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    丁锐, 陈思, 吕静, 桂泰江, 王晓, 赵晓栋, 刘杰, 李秉钧, 宋立英, 李伟华 2019 化学学报 77 1140

    Ding R, Chen S, Lv J, Gui T J, Wang X, Zhao X D, Liu J, Li B J, Song L Y, Li W H 2019 Acta Chem. Sin. 77 1140

    [18]

    Karolina O, Marek L 2020 Coatings 10 883Google Scholar

    [19]

    Cui G, Bi Z X, Zhang R Y, Liu J G, Yu X, Li Z L 2019 Chem. Eng. J. 373 104Google Scholar

    [20]

    Li Q, Zheng S X, Pu J B, Sun J H, Huang L F, Wang L P, Xue Q J. 2019 Phys. Chem. Chem. Phys. 21 12121Google Scholar

    [21]

    Sadeghi A, Neek Amal M, Berdiyorov G R, Peeters F M 2015 Phys. Rev. B 91 014304Google Scholar

    [22]

    Shen L, Li Y, Zhao W J, Wang K, Ci X J, Wu Y M, Liu G, Liu C, Fang Z W 2020 J. Mater. Sci. Technol. 44 121Google Scholar

    [23]

    窦宝捷, 付英奎, 高秀磊, 张颖君, 林修洲, 王兆华, 马兵, 方治文 2020 表面技术 49 241

    Dou B J, Fu Y K, Gao X L, Zhang Y J, Lin X Z, Wang Z H, Ma B, Fang Z W 2020 Surf. Tech. 49 241

    [24]

    Wu Y M, Jiang F W, Qiang Y J, Zhao W J 2021 Carbon 176 39Google Scholar

    [25]

    Yao W J, Zhou S G, Wang Z X, Lu Z B, Hou C J 2020 Appl. Surf. Sci. 499 143962Google Scholar

    [26]

    Widjaja H, Jiang Z T, Altarawneh M, Yin C Y, Goh B M, Mondinos N, Amri A, Dlugogorski B Z 2016 Appl. Surf. Sci. 373 65Google Scholar

    [27]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001Google Scholar

    [28]

    Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, Stubos A K, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M 2010 Small 6 2885Google Scholar

    [29]

    Samarakoon D K, Chen Z F, Nicolas C, Wang X Q 2011 Small 7 965Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [33]

    Lee K, Murray É D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [34]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [35]

    吴迪, 杨永, 章小峰, 黄贞益, 王昭东 2022 71 086301Google Scholar

    Wu D, Yang Y, Zhang X F, Huang Z Y, Wang Z D 2022 Acta Phys. Sin. 71 086301Google Scholar

    [36]

    Chronopoulos D D, Bakandritsos A, Pykal M, Zbořil R, Otyepka M 2017 Appl. Mater. Today 9 60

    [37]

    Li Y F, Pantoja B A, Chen Z F. 2014 J. Chem. Theory. Comput. 10 1265Google Scholar

    [38]

    余金中, 王杏华 2001 物理 3 169Google Scholar

    Yu J Z, Wang X H 2001 Physics 3 169Google Scholar

    [39]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

  • 图 1  优化后的晶格结构 (a) G; (b) C4F; (c) CF

    Figure 1.  Optimized lattice structure: (a) G; (b) C4F; (c) CF.

    图 2  优化前的界面模型 (a) Cu/G界面; (b) Cu/C4F界面; (c) Cu/CF界面

    Figure 2.  Interface model before optimization: (a) Cu/G interface; (b) Cu/C4F interface; (c) Cu/CF interface.

    图 3  O原子在G相邻桥位上的扩散的能垒图

    Figure 3.  The diffusion barrier diagram of diffusion of O atom on the adjacent bridge site of G.

    图 4  (a) O原子在C4F无F面的扩散路径; (b) O原子在C4F有F面的扩散路径

    Figure 4.  (a) the diffusion paths of O atom on the F-free surface of C4F; (b) the diffusion paths of O atom on the F adsorbed surface of C4F.

    图 5  O原子在C4F无F面上扩散的能垒图 (a) 路径1; (b) 路径2; (c) 路径3; (d) 路径4

    Figure 5.  Diffusion barrier diagram of O atom diffusion on the F-free surface of C4F: (a) Path 1; (b) path 2; (c) path 3; (d) path 4.

    图 6  O原子在C4F有F面上扩散的能垒图 (a) 路径5; (b) 路径6; (c) 路径7

    Figure 6.  Diffusion barrier diagram of O atom diffusion on the F adsorbed surface of C4F: (a) Path 5; (b) path 6; (c) path 7

    图 7  O原子穿透 (a) G; (b) C4F的能垒图

    Figure 7.  Diffusion barrier diagram of O atom penetrating: (a) G; (b) C4F.

    图 8  (a) O原子穿透CF的F原子层到达C原子层的能垒图; (b) O原子在CF内相邻桥位上的扩散的能垒图; (c) O原子在CF内沿空心位扩散的能垒图

    Figure 8.  (a) Diffusion barrier diagram of O atom penetrating the F atomic layer of CF to the C atomic layer; (b) diffusion barrier diagram of O atom diffusion on the adjacent bridge site in CF; (c) diffusion barrier diagram of O atom diffusion along the hollow site in CF.

    图 9  O原子沿最佳扩散路径扩散的DOS图 (a) G表面初始态和过渡态的DOS图; (b) C4F有F面初始态和过渡态的DOS图; (c) C4F无F面初始态和过渡态的DOS图; (d) CF内初始态和过渡态的DOS图

    Figure 9.  DOS diagram of O atom diffusion along the optimal diffusion path: (a) DOS diagram of initial state and transition state of G surface; (b) DOS diagram of initial state and transition state on the F adsorbed surface of C4F; (c) DOS diagram of initial state and transition state on the F-free surface of C4F; (d) DOS diagram of initial state and transition state in CF.

    图 10  优化后的界面模型 (a) Cu/G界面; (b) Cu/C4F界面; (c) Cu/CF界面

    Figure 10.  Optimized interface model: (a) Cu/G nterface; (b) Cu/C4F interface; (c) Cu/CF interface.

    图 11  Cu/G、Cu/C4F和Cu/CF界面的DOS图, 虚线为费米能级

    Figure 11.  DOS diagram of Cu/G, Cu/C4F and Cu/CF interfaces.

    图 12  3种界面的轨道哈密顿分布(-COHP), 费米能级位于0 eV

    Figure 12.  Crystal orbital Hamilton populations (-COHP) of three interfaces, the Fermi level is at 0 eV

    表 A1  O原子在C4F不同位置吸附的能量数据

    Table A1.  Energy data of O atom adsorption at different positions of C4F.

    O原子吸附位置C4F
    有F面/eV无F面/eV
    桥位–325.31–326.67
    顶位–323.89–325.23
    空心位H1–321.96–322.36
    空心位H2–321.92–323.25
    DownLoad: CSV

    表 A2  O原子在CF内不同位置吸附的能量数据

    Table A2.  Energy data of O atom adsorption at different positions in CF.

    O原子吸附位置CF内/eV
    桥位–413.70
    空心位–406.10
    DownLoad: CSV
    Baidu
  • [1]

    Nine M J, Cole M A, Tran D N H, Losic D 2015 J. Mater. Chem. A Mater. 3 12580Google Scholar

    [2]

    Sun W, Yang Y J, Yang Z Q, Wang L D, Wang J, Xu D K, Liu G C 2021 J. Mater. Sci. Mater. Med. 91 278

    [3]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458Google Scholar

    [4]

    Tsetseris L, Pantelides S T 2014 Carbon 67 58Google Scholar

    [5]

    Miao M, Nardelli M B, Wang Q, Liu Y 2013 Phys. Chem. Chem. Phys. 15 16132Google Scholar

    [6]

    Zhang R Y, Yu X, Yang Q W, Cui G, Li Z L 2021 Constr. Build. Mater. 294 123613Google Scholar

    [7]

    Topsakal M, Sahin H, Ciraci S 2012 Phys. Rev. B 85 155445Google Scholar

    [8]

    赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 70 095208Google Scholar

    Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Qu Q R 2021 Acta Phys. Sin. 70 095208Google Scholar

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Rogers B R, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [10]

    郭晓蒙, 青芳竹, 李雪松 2021 70 098102Google Scholar

    Guo X M, Qing F Z, Li X S 2021 Acta Phys. Sin. 70 098102Google Scholar

    [11]

    Cui C L, Lim A T O, Huang J X 2017 Nat. Nanotechnol. 12 834Google Scholar

    [12]

    Jihyung L, Diana B 2018 Carbon 126 225Google Scholar

    [13]

    Ding J H, Zhao H R, Zhao X P, Xu BY, Yu H B 2019 J. Mater. Chem. 7 13511Google Scholar

    [14]

    Boukhvalov D W, Kurmaev E Z, Urbańczyk E, Dercz G, Stolarczyk A, Simka W, Kukharenko A I, Zhidkov I S, Slesarev A I, Zatsepin A F, Cholakh S O 2018 Thin Solid Films 665 99Google Scholar

    [15]

    Ankit Y, Rajeev K, Pratap P U, Balaram S 2021 Carbon 173 350Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    丁锐, 陈思, 吕静, 桂泰江, 王晓, 赵晓栋, 刘杰, 李秉钧, 宋立英, 李伟华 2019 化学学报 77 1140

    Ding R, Chen S, Lv J, Gui T J, Wang X, Zhao X D, Liu J, Li B J, Song L Y, Li W H 2019 Acta Chem. Sin. 77 1140

    [18]

    Karolina O, Marek L 2020 Coatings 10 883Google Scholar

    [19]

    Cui G, Bi Z X, Zhang R Y, Liu J G, Yu X, Li Z L 2019 Chem. Eng. J. 373 104Google Scholar

    [20]

    Li Q, Zheng S X, Pu J B, Sun J H, Huang L F, Wang L P, Xue Q J. 2019 Phys. Chem. Chem. Phys. 21 12121Google Scholar

    [21]

    Sadeghi A, Neek Amal M, Berdiyorov G R, Peeters F M 2015 Phys. Rev. B 91 014304Google Scholar

    [22]

    Shen L, Li Y, Zhao W J, Wang K, Ci X J, Wu Y M, Liu G, Liu C, Fang Z W 2020 J. Mater. Sci. Technol. 44 121Google Scholar

    [23]

    窦宝捷, 付英奎, 高秀磊, 张颖君, 林修洲, 王兆华, 马兵, 方治文 2020 表面技术 49 241

    Dou B J, Fu Y K, Gao X L, Zhang Y J, Lin X Z, Wang Z H, Ma B, Fang Z W 2020 Surf. Tech. 49 241

    [24]

    Wu Y M, Jiang F W, Qiang Y J, Zhao W J 2021 Carbon 176 39Google Scholar

    [25]

    Yao W J, Zhou S G, Wang Z X, Lu Z B, Hou C J 2020 Appl. Surf. Sci. 499 143962Google Scholar

    [26]

    Widjaja H, Jiang Z T, Altarawneh M, Yin C Y, Goh B M, Mondinos N, Amri A, Dlugogorski B Z 2016 Appl. Surf. Sci. 373 65Google Scholar

    [27]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001Google Scholar

    [28]

    Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, Stubos A K, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M 2010 Small 6 2885Google Scholar

    [29]

    Samarakoon D K, Chen Z F, Nicolas C, Wang X Q 2011 Small 7 965Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [33]

    Lee K, Murray É D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [34]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [35]

    吴迪, 杨永, 章小峰, 黄贞益, 王昭东 2022 71 086301Google Scholar

    Wu D, Yang Y, Zhang X F, Huang Z Y, Wang Z D 2022 Acta Phys. Sin. 71 086301Google Scholar

    [36]

    Chronopoulos D D, Bakandritsos A, Pykal M, Zbořil R, Otyepka M 2017 Appl. Mater. Today 9 60

    [37]

    Li Y F, Pantoja B A, Chen Z F. 2014 J. Chem. Theory. Comput. 10 1265Google Scholar

    [38]

    余金中, 王杏华 2001 物理 3 169Google Scholar

    Yu J Z, Wang X H 2001 Physics 3 169Google Scholar

    [39]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] Ding Qing-Song, Luo Chao-Bo, Peng Xiang-Yang, Shi Xi-Zhi, He Chao-Yu, Zhong Jian-Xin. First principles study of distributions of Si atoms and structures of siligraphene g-SiC7. Acta Physica Sinica, 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [5] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [8] Chen Shu-Nian, Liao Bin, Chen Lin, Zhang Zhi-Qiang, Shen Yong-Qing, Wang Hao-Qi, Pang Pan, Wu Xian-Ying, Hua Qing-Song, He Guang-Yu. Corrosion and tribological properties of TiAlCN/TiAlN/TiAlcomposite system deposited by magneticfliter cathode vacuum arctechnique. Acta Physica Sinica, 2020, 69(10): 107202. doi: 10.7498/aps.69.20200012
    [9] Wang Qi, Tang Fa-Wei, Hou Chao, Lü Hao, Song Xiao-Yan. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries. Acta Physica Sinica, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [10] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [11] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [12] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [13] Meng Xian-Cai, Zuo Gui-Zhong, Ren Jun, Sun Zhen, Xu Wei, Huang Ming, Li Mei-Heng, Deng Hui-Qiu, Hu Jian-Sheng, Hu Wang-Yu. Study of erosion and deposition characteristics of Li during liquid Li limiter experiment in HT-7. Acta Physica Sinica, 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [14] Xu Lei, Dai Zhen-Hong, Sui Peng-Fei, Wang Wei-Tian, Sun Yu-Ming. Electronic and magnetic properties of fluorinated graphene sheets with divacancy substitutional doping. Acta Physica Sinica, 2014, 63(18): 186101. doi: 10.7498/aps.63.186101
    [15] Gao Tan-Hua. Magnetic and electronic properties of fluorographene sheet with foreign atom substitutions. Acta Physica Sinica, 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [16] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [17] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [18] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [19] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] Liu Gui-Li. Electronic theoretical study on the corrosion and passivation mechanism of Ti metal. Acta Physica Sinica, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
Metrics
  • Abstract views:  4160
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2022
  • Accepted Date:  15 September 2022
  • Available Online:  26 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回
Baidu
map