-
Infrared electrochromic device is a kind of device whose infrared emissivity can change reversibly under electric field excitation. This kind of device has important applications in the fields of adaptive infrared camouflage and intelligent thermal control, and has become a research frontier and hot spot in the field of infrared radiation control. In this paper, the working principle, research status and progress of infrared electrochromic devices based on metal oxides, conductive polymers, graphene and metals are summarized, and the development trend of infrared electrochromic device is analyzed.
-
Keywords:
- infrared emissivity /
- dynamic regulation /
- adapted infrared camouflage /
- intelligent thermal control of spacecraft
[1] Lin S, Ai L, Zhang J, Bu T, Li H, Huang F, Zhang J, Lu Y, Song W 2019 Sol. Energy Mater Sol. Cells 203 110135Google Scholar
[2] Kim D G, Han K I, Choi J H, Kim T K 2016 J. Mech. Sci. Technol. 30 4801Google Scholar
[3] Hong S, Shin S, Chen R 2020 Adv. Funct. Mater. 30 1909788Google Scholar
[4] Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M 2012 Science 337 828Google Scholar
[5] Aliasi G, Mengali G, Quarta A A 2013 J. Guid. Control. Dynam. 36 1544Google Scholar
[6] Tao X, Liu D Q, Yu J S, Cheng H F 2021 Adv. Optial. Mater. 9 2001847Google Scholar
[7] Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar
[8] Xu C Y, Stiubianu G T, Gorodetsky A A 2018 Mater. Sci. 359 1495Google Scholar
[9] Leung E M, Colorado Escobar M, Stiubianu G T, Jim S R, Vyatskikh A L, Feng Z, Garner N, Patel P, Naughton K L, Follador M, Karshalev E, Trexler M D, Gorodetsky A A 2019 Nat. Commun. 10 1947Google Scholar
[10] Xu G, Zhang L, Wang B, Chen X, Dou S, Pan M, Ren F, Li X, Li Y 2020 Sol. Energy Mater. Sol. Cells 208 110356Google Scholar
[11] Xu G, Zhang L, Wang B, Ren Z, Chen X, Dou S, Ren F, Wei H, Li X, Li Y 2020 J. Mater. Chem. C 8 13336Google Scholar
[12] Reid C D, Mcalister E D 1959 J. Opt. Soc. Am. B 49 78Google Scholar
[13] Huchler M, Natusch A, Rothmund W 1995 25th International Conference on Environmental Systems San Diego, California July 10−13, 1995 p1203
[14] Huang Y S, Zhang Y Z, Zeng X T, Hu X F 2002 Appl. Surf. Sci. 202 104Google Scholar
[15] Bergeron B V, White K C, Boehme J L, Gelb A H, Joshi P B 2008 J. Phys. Chem. C 112 832Google Scholar
[16] Kislov N, Groger H, Ponnappan R, Caldwell E, Douglas D, Swanson T 2004 Space Technology and Applications International Forum {minus}. Proceedings July 25−29, 1998 p699
[17] Franke E, Neumann H, Schubert M, Trimble C L, Yan L, Woollam J A 2002 Surf. Coat. Technol. 151 285Google Scholar
[18] Franke E B, Trimble C L, Schubert M, Woollam J A, Hale J S 2000 Appl. Phys. Lett. 77 930Google Scholar
[19] Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J A 2000 J. Phys. D 88 5777Google Scholar
[20] Cogan S F, David R, Klein J D, Nguyen N M, Jones R B, Plante T D 1997 J. Electrochem. Soc. 144 956Google Scholar
[21] Trimble C L, Franke E, Hale J S, Woollam J A 2000 AIP Conf. Proc. 504 797Google Scholar
[22] Kislov N, Groger H, Ponnappan R 2003 AIP Conf. Proc. 654 172Google Scholar
[23] Larsson A L, Niklasson G A 2004 Mater.Lett. 58 2517Google Scholar
[24] Sauvet K, Rougier A, Sauques L 2008 Sol. Energy Mater. Sol. Cells 92 209Google Scholar
[25] Sauvet K, Sauques L, Rougier A 2010 J. Phys. Chem. Solids 71 696Google Scholar
[26] Demiryont H 2008 SPIE 10.1117
[27] Demiryont H, Moorehead D 2009 Sol. Energy Mater. Sol. Cells 93 2075Google Scholar
[28] Cox J L, Shannon III K C, Motaghedi P, Sheets J, Groger H, Williams A 2009 Sensors and Systems for Space Applications III St. Petersburg, 2009 p7330
[29] Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, Zhao J, Li Y 2019 Sol. Energy Mater. Sol. Cells 200 109916Google Scholar
[30] Li M, Gould T, Su Z, Li S, Pan F, Zhang S 2019 Appl. Phys. Lett. 115 073902Google Scholar
[31] Joshi Y, Saksena A, Hadjixenophontos E, Schneider J M, Schmitz G 2020 ACS Appl. Mater. Interfaces 12 10616Google Scholar
[32] Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y 2018 Adv. Funct. Mater. 28 1802180Google Scholar
[33] Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar
[34] Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K 2015 Nano Lett. 15 8365Google Scholar
[35] Zhu S S, Swager T M 1997 J. Am. Chem. Soc. 119 12568Google Scholar
[36] Hellström S, Henriksson P, Kroon R, Wang E, Andersson M R 2011 Org. Electron. 12 1406Google Scholar
[37] Meisel T, Braun R 1992 SPIE 200 1728Google Scholar
[38] Topart P, Hourquebie P 1999 Thin Solid Films 352 243Google Scholar
[39] Chandrasekhar P, Zay B J, Birur G C, Rawal S, Pierson E A, Kauder L, Swanson T 2002 Adv. Funct. Mater. 12 95Google Scholar
[40] Chandrasekhar P, Zay B J, McQueeney T, Birur G C, Sitaram V, Menon R, Coviello M, Elsenbaumer R L 2005 Synth. Met. 155 623Google Scholar
[41] Tian Y, Zhang X, Dou S, Zhang L, Zhang H, Lv H, Wang L, Zhao J, Li Y 2017 Sol. Energy Mater. Sol. Cells 170 120Google Scholar
[42] Zhang L, Xia G, Li X, Xu G, Wang B, Li D, Gavrilyuk A, Zhao J, Li Y 2019 Synth. Met. 248 88Google Scholar
[43] Zhang L, Wang B, Li X, Xu G, Dou S, Zhang X, Chen X, Zhao J, Zhang K, Li Y 2019 J. Phys. Chem. C 7 9878Google Scholar
[44] Groenendaal L B, Freitag J, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar
[45] Holt A L, Wehner J G A, Hammp A, Morse D E 2010 Macromol. Chem. Phys. 211 1701Google Scholar
[46] Kim B, Koh J K, Park J, Ahn C, Ahn J, Kim J H, Jeon S 2015 Nano Converg. 2 19Google Scholar
[47] Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P 2017 J. Mater. Chem. C 5 5824Google Scholar
[48] Petroffe G, Beouch L, Cantin S, Aubert P H, Plesse C, Dudon J P, Vidal F, Chevrot C 2018 Sol. Energy Mater. Sol. Cells 177 23Google Scholar
[49] Petroffe G, Beouch L, Cantin S, Chevrot C, Aubert P H, Dudon J P, Vidal F 2019 Sol. Energy Mater. Sol. Cells 200 110035Google Scholar
[50] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar
[51] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780Google Scholar
[52] Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar
[53] Nair R R, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar
[54] Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar
[55] Wang Y, Liu H, Wang S, Cai M, Ma L 2019 Crystals 9 354Google Scholar
[56] Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C 2018 Nano Lett. 18 4541Google Scholar
[57] Ergoktas M S, Bakan G, Steiner P, Bartlam C, Malevich Y, Yenigun E O, He G, Karim N, Cataldi P, Bissett M A, Kinloch I A, Novoselov K S, Kocabas C 2020 Nano Lett. 20 5346Google Scholar
[58] Ergoktas M S, Bakan G, Kovalska E, Le Fevre L W, Fields R P, Steiner P, Yu X, Salihoglu O, Balci S, Fal’ko V I, Novoselov K S, Dryfe R A W, Kocabas C 2021 Nat. Photonics 10 1038Google Scholar
[59] Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar
[60] Wang F, Itkis M E, Bekyarova E, Haddon R C 2013 Nat. Photonics 7 459Google Scholar
[61] Sun Y, Chang H, Hu J, Wang Y, Weng Y, Zhang C, Niu S, Cao L, Chen Z, Guo N, Liu J, Chi J, Li G, Xiao L 2020 Adv. Optical Mater. 9 2001216Google Scholar
[62] Jun Y C, Gonzales E, Reno J L, Shaner E A, Gabbay A, Brener I 2012 Opt. Express 20 1903Google Scholar
[63] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar
[64] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar
[65] Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar
[66] Zaromb S 1962 J. Electrochem. Soc. 109 912Google Scholar
[67] Zaromb S 1962 J. Electrochem. Soc. 109 906Google Scholar
[68] Camlibel I, Singh S, Stocker H J, VanUitert L G, Zydzik G J 1978 Appl. Phys. Lett. 33 793Google Scholar
[69] Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S, McGehee M D 2017 Joule 1 133Google Scholar
[70] Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2020 J. Mater. Chem. C 8 8538Google Scholar
[71] Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2021 Sci. Adv. 6 3494Google Scholar
[72] Yin X, Chen Q, Pan N 2013 Exp. Therm. Fluid Sci. 46 211Google Scholar
[73] Wu G, Yu D 2013 Prog. Org. Coat. 76 107Google Scholar
-
图 1 不同类型的WO3电致发射率动态调控器件 (a)多孔电极式[13]; (b)半导体电极式[19]; (c)金属网格电极式[18]; (d)超材料电极式[27]; (e) ITO电极式[29]
Figure 1. Several WO3 infrared electrochromic devices: (a) Device with porous electrode[13]; (b) device with semiconductor electrode[19]; (c) device with metal grid electrode[18]; (d) device with metamaterials electrode[27]; (e) device with ITO electrode[29].
图 7 (a)多壁碳纳米管器件结构示意图[61]; (b)多壁碳纳米管微观结构示意图[61]; (c)柔性器件的红外伪装效果[61]; (d)不同掺杂程度器件的红外热图[61]
Figure 7. (a) Structure diagram of multi-walled CNT device[61]; (b) schematic diagram of microstructure of multi-walled CNT[61]; (c) infrared camouflage effect of flexible multi-walled CNT device[61]; (d) infrared thermal maps of multi-walled CNT devices in different states[61].
图 9 (a)基于石墨烯电极的器件的结构及红外热图[70]; (b) 基于Pt电极刚性器件的工作过程及不同通电时间下的反射率曲线[71]; (c)基于Pt电极柔性器件的红外伪装效果及不同通电时间下柔性器件的反射率曲线[71]
Figure 9. (a) Schematic diagram of device structure and thermal maps based on graphene electrode[70]; (b) diagram of working process and the reflectivity curves of rigid device based on Pt electrode at different times of energization[71]; (c) infrared camouflage effect and reflectivity curves of flexible device at different times of energization[71].
表 1 几类红外发射率动态调控器件的主要性能最优值[17,27,32,34,39,45,56,61,71]
Table 1. The optimum values of main performance of several kinds of IR emissivity adjustable devices[17,27,32,34,39,45,56,61,71].
主要性能 金属氧化物类 导电聚合物类 石墨烯类 金属类 调控量 0.800 (7—12 μm) 0.553 (8—14 μm) 0.550 (7.5—13 μm) 0.770 (8—14 μm) 响应时间/s 1.6 1.0 1$ \times $10–9 10 循环寿命/次 100000 900 3500 400 多波段兼容性 红外 可见光-红外 可见光-红外-微波 可见光-红外 工艺复杂程度 较复杂 简单 复杂 简单 制备成本 较高 较低 高 较高 -
[1] Lin S, Ai L, Zhang J, Bu T, Li H, Huang F, Zhang J, Lu Y, Song W 2019 Sol. Energy Mater Sol. Cells 203 110135Google Scholar
[2] Kim D G, Han K I, Choi J H, Kim T K 2016 J. Mech. Sci. Technol. 30 4801Google Scholar
[3] Hong S, Shin S, Chen R 2020 Adv. Funct. Mater. 30 1909788Google Scholar
[4] Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M 2012 Science 337 828Google Scholar
[5] Aliasi G, Mengali G, Quarta A A 2013 J. Guid. Control. Dynam. 36 1544Google Scholar
[6] Tao X, Liu D Q, Yu J S, Cheng H F 2021 Adv. Optial. Mater. 9 2001847Google Scholar
[7] Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar
[8] Xu C Y, Stiubianu G T, Gorodetsky A A 2018 Mater. Sci. 359 1495Google Scholar
[9] Leung E M, Colorado Escobar M, Stiubianu G T, Jim S R, Vyatskikh A L, Feng Z, Garner N, Patel P, Naughton K L, Follador M, Karshalev E, Trexler M D, Gorodetsky A A 2019 Nat. Commun. 10 1947Google Scholar
[10] Xu G, Zhang L, Wang B, Chen X, Dou S, Pan M, Ren F, Li X, Li Y 2020 Sol. Energy Mater. Sol. Cells 208 110356Google Scholar
[11] Xu G, Zhang L, Wang B, Ren Z, Chen X, Dou S, Ren F, Wei H, Li X, Li Y 2020 J. Mater. Chem. C 8 13336Google Scholar
[12] Reid C D, Mcalister E D 1959 J. Opt. Soc. Am. B 49 78Google Scholar
[13] Huchler M, Natusch A, Rothmund W 1995 25th International Conference on Environmental Systems San Diego, California July 10−13, 1995 p1203
[14] Huang Y S, Zhang Y Z, Zeng X T, Hu X F 2002 Appl. Surf. Sci. 202 104Google Scholar
[15] Bergeron B V, White K C, Boehme J L, Gelb A H, Joshi P B 2008 J. Phys. Chem. C 112 832Google Scholar
[16] Kislov N, Groger H, Ponnappan R, Caldwell E, Douglas D, Swanson T 2004 Space Technology and Applications International Forum {minus}. Proceedings July 25−29, 1998 p699
[17] Franke E, Neumann H, Schubert M, Trimble C L, Yan L, Woollam J A 2002 Surf. Coat. Technol. 151 285Google Scholar
[18] Franke E B, Trimble C L, Schubert M, Woollam J A, Hale J S 2000 Appl. Phys. Lett. 77 930Google Scholar
[19] Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J A 2000 J. Phys. D 88 5777Google Scholar
[20] Cogan S F, David R, Klein J D, Nguyen N M, Jones R B, Plante T D 1997 J. Electrochem. Soc. 144 956Google Scholar
[21] Trimble C L, Franke E, Hale J S, Woollam J A 2000 AIP Conf. Proc. 504 797Google Scholar
[22] Kislov N, Groger H, Ponnappan R 2003 AIP Conf. Proc. 654 172Google Scholar
[23] Larsson A L, Niklasson G A 2004 Mater.Lett. 58 2517Google Scholar
[24] Sauvet K, Rougier A, Sauques L 2008 Sol. Energy Mater. Sol. Cells 92 209Google Scholar
[25] Sauvet K, Sauques L, Rougier A 2010 J. Phys. Chem. Solids 71 696Google Scholar
[26] Demiryont H 2008 SPIE 10.1117
[27] Demiryont H, Moorehead D 2009 Sol. Energy Mater. Sol. Cells 93 2075Google Scholar
[28] Cox J L, Shannon III K C, Motaghedi P, Sheets J, Groger H, Williams A 2009 Sensors and Systems for Space Applications III St. Petersburg, 2009 p7330
[29] Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, Zhao J, Li Y 2019 Sol. Energy Mater. Sol. Cells 200 109916Google Scholar
[30] Li M, Gould T, Su Z, Li S, Pan F, Zhang S 2019 Appl. Phys. Lett. 115 073902Google Scholar
[31] Joshi Y, Saksena A, Hadjixenophontos E, Schneider J M, Schmitz G 2020 ACS Appl. Mater. Interfaces 12 10616Google Scholar
[32] Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y 2018 Adv. Funct. Mater. 28 1802180Google Scholar
[33] Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar
[34] Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K 2015 Nano Lett. 15 8365Google Scholar
[35] Zhu S S, Swager T M 1997 J. Am. Chem. Soc. 119 12568Google Scholar
[36] Hellström S, Henriksson P, Kroon R, Wang E, Andersson M R 2011 Org. Electron. 12 1406Google Scholar
[37] Meisel T, Braun R 1992 SPIE 200 1728Google Scholar
[38] Topart P, Hourquebie P 1999 Thin Solid Films 352 243Google Scholar
[39] Chandrasekhar P, Zay B J, Birur G C, Rawal S, Pierson E A, Kauder L, Swanson T 2002 Adv. Funct. Mater. 12 95Google Scholar
[40] Chandrasekhar P, Zay B J, McQueeney T, Birur G C, Sitaram V, Menon R, Coviello M, Elsenbaumer R L 2005 Synth. Met. 155 623Google Scholar
[41] Tian Y, Zhang X, Dou S, Zhang L, Zhang H, Lv H, Wang L, Zhao J, Li Y 2017 Sol. Energy Mater. Sol. Cells 170 120Google Scholar
[42] Zhang L, Xia G, Li X, Xu G, Wang B, Li D, Gavrilyuk A, Zhao J, Li Y 2019 Synth. Met. 248 88Google Scholar
[43] Zhang L, Wang B, Li X, Xu G, Dou S, Zhang X, Chen X, Zhao J, Zhang K, Li Y 2019 J. Phys. Chem. C 7 9878Google Scholar
[44] Groenendaal L B, Freitag J, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar
[45] Holt A L, Wehner J G A, Hammp A, Morse D E 2010 Macromol. Chem. Phys. 211 1701Google Scholar
[46] Kim B, Koh J K, Park J, Ahn C, Ahn J, Kim J H, Jeon S 2015 Nano Converg. 2 19Google Scholar
[47] Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P 2017 J. Mater. Chem. C 5 5824Google Scholar
[48] Petroffe G, Beouch L, Cantin S, Aubert P H, Plesse C, Dudon J P, Vidal F, Chevrot C 2018 Sol. Energy Mater. Sol. Cells 177 23Google Scholar
[49] Petroffe G, Beouch L, Cantin S, Chevrot C, Aubert P H, Dudon J P, Vidal F 2019 Sol. Energy Mater. Sol. Cells 200 110035Google Scholar
[50] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar
[51] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780Google Scholar
[52] Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar
[53] Nair R R, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar
[54] Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar
[55] Wang Y, Liu H, Wang S, Cai M, Ma L 2019 Crystals 9 354Google Scholar
[56] Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C 2018 Nano Lett. 18 4541Google Scholar
[57] Ergoktas M S, Bakan G, Steiner P, Bartlam C, Malevich Y, Yenigun E O, He G, Karim N, Cataldi P, Bissett M A, Kinloch I A, Novoselov K S, Kocabas C 2020 Nano Lett. 20 5346Google Scholar
[58] Ergoktas M S, Bakan G, Kovalska E, Le Fevre L W, Fields R P, Steiner P, Yu X, Salihoglu O, Balci S, Fal’ko V I, Novoselov K S, Dryfe R A W, Kocabas C 2021 Nat. Photonics 10 1038Google Scholar
[59] Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar
[60] Wang F, Itkis M E, Bekyarova E, Haddon R C 2013 Nat. Photonics 7 459Google Scholar
[61] Sun Y, Chang H, Hu J, Wang Y, Weng Y, Zhang C, Niu S, Cao L, Chen Z, Guo N, Liu J, Chi J, Li G, Xiao L 2020 Adv. Optical Mater. 9 2001216Google Scholar
[62] Jun Y C, Gonzales E, Reno J L, Shaner E A, Gabbay A, Brener I 2012 Opt. Express 20 1903Google Scholar
[63] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar
[64] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar
[65] Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar
[66] Zaromb S 1962 J. Electrochem. Soc. 109 912Google Scholar
[67] Zaromb S 1962 J. Electrochem. Soc. 109 906Google Scholar
[68] Camlibel I, Singh S, Stocker H J, VanUitert L G, Zydzik G J 1978 Appl. Phys. Lett. 33 793Google Scholar
[69] Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S, McGehee M D 2017 Joule 1 133Google Scholar
[70] Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2020 J. Mater. Chem. C 8 8538Google Scholar
[71] Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2021 Sci. Adv. 6 3494Google Scholar
[72] Yin X, Chen Q, Pan N 2013 Exp. Therm. Fluid Sci. 46 211Google Scholar
[73] Wu G, Yu D 2013 Prog. Org. Coat. 76 107Google Scholar
Catalog
Metrics
- Abstract views: 8296
- PDF Downloads: 334
- Cited By: 0