搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能

孙政 陈少平 杨江锋 孟庆森 崔教林

引用本文:
Citation:

非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能

孙政, 陈少平, 杨江锋, 孟庆森, 崔教林

Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te

Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin
PDF
导出引用
  • 热电材料是一类能够实现热与电相互转换的功能材料,在制冷和发电领域极具应用潜力. 本文采用金属Sb元素非等电子替换Cu3Ga5Te9化学式中的Cu和Te,观察到材料Seebeck系数和电导率提升的现象. 这些电学性能的改善与载流子浓度和有效质量的增大及迁移率基本维持不变有关. 载流子浓度的提高是由于Sb原子占位在Te晶格位置后费米能级进入到价带所产生的空穴掺杂效应所致,同时也与Cu含量减少后铜空位(V-1Cu)浓度增大相关联. 另外,非等电子替换后,阴离子(Te2-)移位导致了晶格结构缺陷参数u和η的改变,其改变量Δu和Δη与材料晶格热导率(κL)的变化密切相关. 在766 K时,适量的Sb替换量使材料的最大热电优值(ZT)达到0.6,比Cu3Ga5Te9提高了近25%. 因此,通过选择替换元素、被替换元素及替换量有效地调控了材料的电学及热学性能,在黄铜矿结构半导体中实现了非等电子元素替换改善热电性能的思想.
    Thermoelectric materials, which allow the conversion between heat and electricity, can be directly applied in the fields of cooling and power generation. Here we report an effective approach: non-isoelectronic substitution of Sb for Cu and Te in Cu3Ga5Te9 to increase the Seebeck coefficient and electrical conductivity. This improvement is attributed to the enhancement in carrier concentration n and effective mass as well as the conservation of the carrier mobility μ. The enhancement of the carrier concentration is caused by the hole doping effect due to the drop of the Fermi level into the valence band when Sb occupies the Te lattice sites, and also due to the increase of the copper vacancy (V-1Cu) concentration when Cu content decreases. In addition, the non-isoelectronic substitution can yield extra crystal structure defects. These defects, which are represented by the alterations of anion (Te2-) position displacement (u) and tetragonal deformation (η), directly govern the lattice thermal conductivity (κL) on an atomic scale. The maximum ZT value is 0.6 at 766 K with proper Sb substitution, which is about 25% higher than that of Cu3Ga5Te9. Therefore, we are able to effectively manipulate the electrical and thermal properties through proper selections of the substituting / substituted elements and their quantities, and prove that the non-isoelectronic substitution approach in the chalcopyrite semiconductors is an effective way to improve the thermoelectric performance.
    • 基金项目: 国家自然科学基金(批准号:51171084,50871056)和宁波市国际合作项目(批准号:2011D10012)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171084, 50871056), the Ningbo International cooperation Project (Grant Nos. 2011D10012), and the We should also acknowledge the support from Wang Kuancheng Education Foundation.
    [1]

    Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 66 473

    [2]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970

    [3]

    Rhyee J, Lee K H, Lee S M, Cho E, Kim S II, Lee E, Kwon Y S, Shim J H, Kotliar G 2009 Nature 459 965

    [4]

    Liu H L, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nature Mater. 11 422

    [5]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [6]

    Wasim S M, Rincó n C, Marí n G, Delgado J M 2000 Appl. Phys. Lett. 77 94

    [7]

    Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 3199

    [8]

    Ye Z, Cho J Y, Tessema M M, Salvador J R, Waldo R A, Wang H, Cai W 2013 J. Solid State Chem . 201 262

    [9]

    Cui J L, Li Y P, Du Z L, Meng Q S, Zhou H 2013 J. Mater. Chem. A 1 677

    [10]

    Cui J L, Liu X L, Zhang X J, Li Y Y, Deng Y 2011 J. Appl. Phys. 110 023708

    [11]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [12]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2012 Adv. Mater. 24 3622

    [14]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [15]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [16]

    Xiao X X, Xie W J, Tang X F, Zhang Q J 2011 Chin. Phys. B 20 087201

    [17]

    Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y, Yokota Y 1998 J. Alloys Compd. 279 136

    [18]

    Yao J L, Brunetta C D, Aitken J A 2012 J. Phys.: Condens. Matter 24 086006

    [19]

    Zhang Y P, LI Y, LI C Z, WANG W W, Zhang J Y, Wang R M 2012 Rare Metals 31 168

    [20]

    Wu W, Li Y P, Meng Q S, Sun Z, Ren W, Yang J F, Cui J L 2013 Appl. Phys. Lett. 103 011905

    [21]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

    [22]

    Berman R 1976 Thermal Conduction in Solids (Clarendon Press, Oxford University)

  • [1]

    Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 66 473

    [2]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970

    [3]

    Rhyee J, Lee K H, Lee S M, Cho E, Kim S II, Lee E, Kwon Y S, Shim J H, Kotliar G 2009 Nature 459 965

    [4]

    Liu H L, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nature Mater. 11 422

    [5]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [6]

    Wasim S M, Rincó n C, Marí n G, Delgado J M 2000 Appl. Phys. Lett. 77 94

    [7]

    Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 3199

    [8]

    Ye Z, Cho J Y, Tessema M M, Salvador J R, Waldo R A, Wang H, Cai W 2013 J. Solid State Chem . 201 262

    [9]

    Cui J L, Li Y P, Du Z L, Meng Q S, Zhou H 2013 J. Mater. Chem. A 1 677

    [10]

    Cui J L, Liu X L, Zhang X J, Li Y Y, Deng Y 2011 J. Appl. Phys. 110 023708

    [11]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [12]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2012 Adv. Mater. 24 3622

    [14]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [15]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [16]

    Xiao X X, Xie W J, Tang X F, Zhang Q J 2011 Chin. Phys. B 20 087201

    [17]

    Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y, Yokota Y 1998 J. Alloys Compd. 279 136

    [18]

    Yao J L, Brunetta C D, Aitken J A 2012 J. Phys.: Condens. Matter 24 086006

    [19]

    Zhang Y P, LI Y, LI C Z, WANG W W, Zhang J Y, Wang R M 2012 Rare Metals 31 168

    [20]

    Wu W, Li Y P, Meng Q S, Sun Z, Ren W, Yang J F, Cui J L 2013 Appl. Phys. Lett. 103 011905

    [21]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

    [22]

    Berman R 1976 Thermal Conduction in Solids (Clarendon Press, Oxford University)

  • [1] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能.  , 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [2] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能.  , 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [5] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能.  , 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [6] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究.  , 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [7] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , 2021, (): . doi: 10.7498/aps.70.20211843
    [8] 李彩云, 何文科, 王东洋, 张潇, 赵立东. 通过插层Cu实现SnSe2的高效热电性能.  , 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [9] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能.  , 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [10] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能.  , 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [11] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响.  , 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [12] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律.  , 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [13] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响.  , 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [14] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能.  , 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [15] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能.  , 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [16] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能.  , 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [17] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性.  , 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [18] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响.  , 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [19] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能.  , 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [20] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能.  , 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
计量
  • 文章访问数:  6227
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2013-11-24
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map