搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状氮化物BaMN2(M=Ti,Zr,Hf)各向异性物理性质的第一性原理研究

虞健祥 梁华琳 杨轶钧 明星

引用本文:
Citation:

层状氮化物BaMN2(M=Ti,Zr,Hf)各向异性物理性质的第一性原理研究

虞健祥, 梁华琳, 杨轶钧, 明星

First-principles study on the anisotropic physical properties of the layered nitride BaMN2 (M = Ti, Zr, Hf)

Yu Jian-Xiang, Liang Hua-Lin, Yang Yi-Jun, Ming Xing
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 三元层状氮化物因其独特的电学、光学和光电性质而受到广泛关注,有希望用于制造低成本、高效率的光电材料、太阳能电池材料和光催化剂。三元层状氮化物BaZrN2和BaHfN2已经被固态实验合成,但其光学性质和电输运性质尚未被系统地研究。本文采用基于密度泛函理论的第一性原理计算系统地研究了BaMN2(M=Ti,Zr,Hf)氮化物的力学、电子、光吸收、载流子传输和介电响应性质。由于BaMN2氮化物由准二维[MN2]2-板层排列组成独特的层状晶体结构,且板层内的电子云重叠较多形成强共价键,板层之间的成键作用较弱,使得其物理性质表现出显著的各向异性。首先,BaMN2的体模量、剪切模量、杨氏模量和泊松比等力学性质表现出各向异性,具有较低的模量、较高的泊松比和Pugh模量比,表明具有良好的塑性。此外,BaMN2具有处于可见光能量范围内的间接带隙值(1.75~2.25 eV),适宜用于太阳能电池吸收层,且带边位置满足水分解光催化剂的要求。由于其载流子在不同方向上的有效质量存在巨大差异,使得它们还具有超高各向异性的载流子迁移率(103 cm2s-1v-1数量级)和较低的激子结合能。同时,沿平面内方向和面外方向的原子排列和成键作用存在显著差异,导致在低能量区域沿平面内具有非常强的光吸收能力和较高的各向异性可见光吸收系数(105 cm-1数量级);而在较高的能量区域中,电子从占据态到非占据态的跃迁机会增多,导致对光的吸收情况变得更复杂,各向异性相对减弱。此外,特殊的层状结构沿垂直于板层的方向具有较低极化率和较高振动频率,使得BaMN2有较高的介电常数。这些优异的各向异性的力学、光电和输运性质使得BaMN2层状氮化物可以作为光电子、光伏和光催化领域的有前景的半导体材料。
    Ternary layered nitrides have garnered widespread attention due to their unique electrical, optical and optoelectronic properties, which are promising for the fabrication of low-cost and highefficiency optoelectronic materials, solar cell materials and photocatalysts. Although there are no experimental reports on BaTiN2 to date, BaZrN2 and BaHfN2 have been synthesized experimentally by solid state method. However, their optical and electrical transport properties have not been systematically investigated. The purpose of this paper is to systematically investigates the mechanical, electronic, optical absorption, carrier transport, and dielectric response properties of BaMN2 (M = Ti, Zr, Hf) nitrides by first-principles calculations based on density functional theory. Due to the quasi-two-dimensional layered arrangement of [MN2]2- slabs, the ionic bonds between Ba2+ and N3-, and the weak interactions between the slabs, deformation along this direction is most likely to occur under the action of external stress. BaMN2 nitrides exhibit significant anisotropic physical properties. Firstly, the mechanical properties of BaMN2, such as bulk modulus, shear modulus, Young's modulus and Poisson's ratio, show prominent anisotropy. The lower modulus, higher Poisson's ratios and Pugh's modulus ratios indicate good flexibility of the BaMN2 nitrides. In addition, BaMN2 has indirect bandgap values (1.75-2.25 eV) within the visible-light energy range, which meets the basic requirement for the band gap of a photocatalyst for water splitting (greater than 1.23 eV). Moreover, BaMN2 has suitable band-edge positions. The appropriate bandgap values and band-edge positions indicate their broad application prospects in the absorber layer of solar cells and photocatalytic water decomposition. Attributed to the pronounced differences in the effective mass of its charge carriers in different directions, BaMN2 exhibit ultrahigh anisotropic carrier mobilities (on the order of 103 cm2s-1v-1) and lower exciton binding energies. At the same time, there are significant differences in atomic arrangement and bonding interactions along the in-plane and out of plane directions, resulting in high anisotropic visible-light absorption coefficients (on the order of 105 cm-1) in the low energy regions. In contrast, the opportunities for electrons to transition from occupied to unoccupied states increase, leading to more complex light absorption and relatively reduced anisotropy in higher energy regions. Furthermore, the special layered structure has lower polarizability and higher vibration frequency along the vertical direction perpendicular to the [MN2]2- layers, rendering BaMN2 nitrides show high dielectric constants. These excellent anisotropic mechanical, optoelectronic, and transport properties allow BaMN2 layered nitrides to be used as promising semiconductor materials in the fields of optoelectronics, photovoltaics, and photocatalysis.
  • [1]

    Ahmed S, Yi J B 2017 Nano-Micro Lett. 9 106313

    [2]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [3]

    Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, Yoo W J 2021 2D Mater. 8 012002

    [4]

    Lu C C, Lin Y C, Yeh C H, Huang J C, Chiu P W J A N 2012 Nanscale 6 4469

    [5]

    Allain A, Kang J, Banerjee K, Kis A J N M 2015 Nat. Mater. 14 1195

    [6]

    Zhang L, Zhang P Z, Liu F, Li F Z, Luo Y, Hou J W, Wu K P 2024 Acta Phys. Sin. 73 047101 (in Chinese)[张冷,张鹏展,刘飞,李方政,罗毅,侯纪伟,吴孔平2024 73 047101]

    [7]

    Ling X, Wang H, Huang S, Xia F, Dresselhaus M S 2015 PNAS 112 4523

    [8]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [9]

    Cheng Q Z, Huang Y, Li Y H, Zhang K, Xian G Y, Liu H Y, Che B Y, Pan L L, Han Y C, Zhu K, Qi Q, Xie Y F, Pan J B, Chen H L, Li Y F, Guo H, Yang H T, Gao H J 2023 Acta Phys. Sin. 72 218102(in Chinese)[程秋振,黄引,李玉辉,张凯,冼国裕,刘鹤元,车冰 玉,潘禄禄,韩烨超,祝轲,齐琦,谢耀锋,潘金波,陈海龙,李永峰,郭辉,杨海涛, 高鸿钧2023 72 218102]

    [10]

    Xue P, Chu D, Xie C, Tikhonov E, Butler K T 2022 J. Phys. Chem. C 126 17398

    [11]

    Greenaway A L, Ke S, Culman T, Talley K R, Mangum J S, Heinselman K N, Kingsbury R S, Smaha R W, Gish M K, Miller E M, Persson K A, Gregoire J M, Bauers S R, Neaton J B, Tamboli A C, Zakutayev A 2022 J. Am. Chem. Soc. 144 13673

    [12]

    Szymanski N J, Walters L N, Hellman O, Gall D, Khare S V 2018 J. Mater. Chem. A 6 20852

    [13]

    Arca E, Perkins J D, Lany S, Mis A, Chen B R, Dippo P, Partridge J L, Sun W, Holder A, Tamboli A C, Toney M F, Schelhas L T, Ceder G, Tumas W, Teeter G, Zakutayev A 2019 Mater. Horiz. 6 1669

    [14]

    Bauers S R, Holder A, Sun W, Melamed C L, Woods-Robinson R, Mangum J, Perkins J, Tumas W, Gorman B, Tamboli A, Ceder G, Lany S, Zakutayev A 2019 PNAS 116 14829

    [15]

    Hinuma Y, Hatakeyama T, Kumagai Y, Burton L A, Sato H, Muraba Y, Iimura S, Hiramatsu H, Tanaka I, Hosono H J N C 2016 Nat. Commun. 7 11962

    [16]

    Kangsabanik J, Alam A 2019 Phys. Rev. Mater. 3 105405

    [17]

    Shiraishi A, Kimura S, He X, Watanabe N, Katase T, Ide K, Minohara M, Matsuzaki K, Hiramatsu H, Kumigashira H, Hosono H, Kamiya T 2022 Inorg. Chem. 61 6650

    [18]

    Zakutayev A, Jankousky M, Wolf L, Feng Y, Rom C L, Bauers S R, Borkiewicz O, LaVan D A, Smaha R W, Stevanovic V 2024 Nat. Synth 3 1471

    [19]

    Ming X, Kuang X 2024 Nat. Synth 3 1444

    [20]

    Liu J, Lu S, Wang Y, Li C, Ming X, Kuang X 2022 Chem. Mater. 34 4505

    [21]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1996 Inorg. Chem. 35 7608

    [22]

    Seeger O, Strähle J 1994 Z NATURFORSCH B 49 1169

    [23]

    Li X, Wang X, Han Y, Jing X, Huang Q, Kuang X, Gao Q, Chen J, Xing X 2017 Chem. Mater. 29 1989

    [24]

    Farault G, Gautier R, Baker C F, Bowman A, Gregory D H 2003 Chem. Mater. 15 3922

    [25]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1998 Inorg. Chem. 37 3775

    [26]

    Seeger O, Hofmann M, Strähle J, Laval J P, Frit B 2004 Z Anorg. Allg. Chem. 620 2008

    [27]

    Gregory D H, Barker M G, Edwards P P, Slaski M, Siddons D J 1998 J. Solid. State. Chem. 137 62

    [28]

    Gregory D H, O'Meara P M, Gordon A G, Siddons D J, Blake A J, Barker M G, Hamor T A, 2001 J. Alloys Compd 317-318 237

    [29]

    Yao M, Zhang Y, Ban J, Hou J, Zhang B, Liu J, Ming X, Kuang X 2023 PCCP 25 19158

    [30]

    Ohkubo I, Mori T 2015 Chem. Mater. 27 7265

    [31]

    Ohkubo I, Mori T 2016 APL Mater. 4 104808

    [32]

    Liang H, Lu J, Zhang W, Ming X 2025 Mater. Sci. Semicond. Process. 185 108955

    [33]

    Luo H, Wang H, Bi Z, Zou G, McCleskey T M, Burrell A K, Bauer E, Hawley M E, Wang Y, Jia Q 2009 Angew. Chem. Int. Ed. 48 1490

    [34]

    Kaur A, Ylvisaker E R, Li Y, Galli G, Pickett W E 2010 PHYS REV B. 82 155125

    [35]

    Yao M, Li M, Zhang L, Wang H 2024 PHYS REV B. 110 115202

    [36]

    Yang X F, Wang Z Q, Fu H H 2024 PHYS REV B. 109 155414

    [37]

    Blöchl P E 1994 PHYS REV B. 50 17953

    [38]

    Kresse G, Joubert D 1999 PHYS REV B. 59 1758

    [39]

    Kresse G, Furthmüller J 1996 PHYS REV B. 54 11169

    [40]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [41]

    Monkhorst H J, Pack J D 1976 PHYS REV B. 13 5188

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [44]

    Yim K, Yong Y, Lee J, Lee K, Nahm H-H, Yoo J, Lee C, Seong Hwang C, Han S 2015 NPG Asia Mater. 7 e190

    [45]

    Gonze X, Lee C 1997 PHYS REV B. 55 10355

    [46]

    Giannozzi P, de Gironcoli S, Pavone P, Baroni S 1991 PHYS REV B. 43 7231

    [47]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [48]

    Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C, Kresse G 2016 Sci. Rep. 6 28618

    [49]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 PHYS REV B. 73 045112

    [50]

    Zhao X, Vanderbilt D 2002 PHYS REV B. 65 075105

    [51]

    Cockayne E, Burton B P 2000 PHYS REV B. 62 3735

    [52]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [53]

    Mouhat F, Coudert F-X 2014 PHYS REV B. 90 224104

    [54]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 PHYS REV B. 76 054115

    [55]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033

    [56]

    Yu R, Xiao F, Lei W, Wang W, Ma Y, Gong X, Ming X 2023 PCCP 25 30066

    [57]

    Pugh S F 2009 Lond.Edinb.Phil.Mag. 45 823

    [58]

    Liao M, Liu Y, Min L, Lai Z, Han T, Yang D, Zhu J 2018 Intermetallics 101 152

    [59]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543

    [60]

    Zhang H, Guégan F, Wang J, Frapper G 2024 PCCP 26 14675

    [61]

    Heying B, Smorchkova I, Poblenz C, Elsass C, Fini P, Den Baars S, Mishra U, Speck J S 2000 Appl. Phys. Lett. 77 2885

    [62]

    Lang H, Zhang S, Liu Z 2016 PHYS REV B. 94 235306

    [63]

    Kosarev I, Kistanov A 2024 Nanoscale 16 10030

    [64]

    Zhang H, Wang J, Guégan F, Frapper G 2023 Nanoscale 15 7472

    [65]

    Dvorak M, Wei S-H, Wu Z 2013 Phys. Rev. Lett. 110 016402

    [66]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, DenBaars S P 1997 Appl. Phys. Lett. 71 2572

  • [1] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高.  , doi: 10.7498/aps.73.20240557
    [2] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究.  , doi: 10.7498/aps.73.20231353
    [3] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , doi: 10.7498/aps.71.20221019
    [4] 李欢, 叶小球, 唐俊, 敖冰云, 高涛. Li-Y-H三元氢化物的结构和稳定性研究.  , doi: 10.7498/aps.71.20210824
    [5] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究.  , doi: 10.7498/aps.69.20191632
    [6] 康健彬, 李倩, 李沫. 氮化物子带跃迁探测器材料结构对器件效率的影响.  , doi: 10.7498/aps.68.20190722
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , doi: 10.7498/aps.63.047101
    [8] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , doi: 10.7498/aps.61.097102
    [9] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究.  , doi: 10.7498/aps.61.027801
    [10] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究.  , doi: 10.7498/aps.61.197102
    [11] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究.  , doi: 10.7498/aps.61.016202
    [12] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究.  , doi: 10.7498/aps.61.048102
    [13] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 淀积在不同小倾角蓝宝石衬底的n型GaN的研究.  , doi: 10.7498/aps.58.2644
    [14] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究.  , doi: 10.7498/aps.57.5476
    [15] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究.  , doi: 10.7498/aps.57.6213
    [16] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究.  , doi: 10.7498/aps.57.7729
    [17] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究.  , doi: 10.7498/aps.56.5353
    [18] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子.  , doi: 10.7498/aps.56.1911
    [19] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究.  , doi: 10.7498/aps.54.955
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  53
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map