-
三元层状氮化物因其独特的电学、光学和光电性质而受到广泛关注,有希望用于制造低成本、高效率的光电材料、太阳能电池材料和光催化剂。三元层状氮化物BaZrN2和BaHfN2已经被固态实验合成,但其光学性质和电输运性质尚未被系统地研究。本文采用基于密度泛函理论的第一性原理计算系统地研究了BaMN2(M=Ti,Zr,Hf)氮化物的力学、电子、光吸收、载流子传输和介电响应性质。由于BaMN2氮化物由准二维[MN2]2-板层排列组成独特的层状晶体结构,且板层内的电子云重叠较多形成强共价键,板层之间的成键作用较弱,使得其物理性质表现出显著的各向异性。首先,BaMN2的体模量、剪切模量、杨氏模量和泊松比等力学性质表现出各向异性,具有较低的模量、较高的泊松比和Pugh模量比,表明具有良好的塑性。此外,BaMN2具有处于可见光能量范围内的间接带隙值(1.75~2.25 eV),适宜用于太阳能电池吸收层,且带边位置满足水分解光催化剂的要求。由于其载流子在不同方向上的有效质量存在巨大差异,使得它们还具有超高各向异性的载流子迁移率(103 cm2s-1v-1数量级)和较低的激子结合能。同时,沿平面内方向和面外方向的原子排列和成键作用存在显著差异,导致在低能量区域沿平面内具有非常强的光吸收能力和较高的各向异性可见光吸收系数(105 cm-1数量级);而在较高的能量区域中,电子从占据态到非占据态的跃迁机会增多,导致对光的吸收情况变得更复杂,各向异性相对减弱。此外,特殊的层状结构沿垂直于板层的方向具有较低极化率和较高振动频率,使得BaMN2有较高的介电常数。这些优异的各向异性的力学、光电和输运性质使得BaMN2层状氮化物可以作为光电子、光伏和光催化领域的有前景的半导体材料。Ternary layered nitrides have garnered widespread attention due to their unique electrical, optical and optoelectronic properties, which are promising for the fabrication of low-cost and highefficiency optoelectronic materials, solar cell materials and photocatalysts. Although there are no experimental reports on BaTiN2 to date, BaZrN2 and BaHfN2 have been synthesized experimentally by solid state method. However, their optical and electrical transport properties have not been systematically investigated. The purpose of this paper is to systematically investigates the mechanical, electronic, optical absorption, carrier transport, and dielectric response properties of BaMN2 (M = Ti, Zr, Hf) nitrides by first-principles calculations based on density functional theory. Due to the quasi-two-dimensional layered arrangement of [MN2]2- slabs, the ionic bonds between Ba2+ and N3-, and the weak interactions between the slabs, deformation along this direction is most likely to occur under the action of external stress. BaMN2 nitrides exhibit significant anisotropic physical properties. Firstly, the mechanical properties of BaMN2, such as bulk modulus, shear modulus, Young's modulus and Poisson's ratio, show prominent anisotropy. The lower modulus, higher Poisson's ratios and Pugh's modulus ratios indicate good flexibility of the BaMN2 nitrides. In addition, BaMN2 has indirect bandgap values (1.75-2.25 eV) within the visible-light energy range, which meets the basic requirement for the band gap of a photocatalyst for water splitting (greater than 1.23 eV). Moreover, BaMN2 has suitable band-edge positions. The appropriate bandgap values and band-edge positions indicate their broad application prospects in the absorber layer of solar cells and photocatalytic water decomposition. Attributed to the pronounced differences in the effective mass of its charge carriers in different directions, BaMN2 exhibit ultrahigh anisotropic carrier mobilities (on the order of 103 cm2s-1v-1) and lower exciton binding energies. At the same time, there are significant differences in atomic arrangement and bonding interactions along the in-plane and out of plane directions, resulting in high anisotropic visible-light absorption coefficients (on the order of 105 cm-1) in the low energy regions. In contrast, the opportunities for electrons to transition from occupied to unoccupied states increase, leading to more complex light absorption and relatively reduced anisotropy in higher energy regions. Furthermore, the special layered structure has lower polarizability and higher vibration frequency along the vertical direction perpendicular to the [MN2]2- layers, rendering BaMN2 nitrides show high dielectric constants. These excellent anisotropic mechanical, optoelectronic, and transport properties allow BaMN2 layered nitrides to be used as promising semiconductor materials in the fields of optoelectronics, photovoltaics, and photocatalysis.
-
Keywords:
- nitrides /
- carrier mobility /
- anisotropy /
- first-principles study
-
[1] Ahmed S, Yi J B 2017 Nano-Micro Lett. 9 106313
[2] Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305
[3] Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, Yoo W J 2021 2D Mater. 8 012002
[4] Lu C C, Lin Y C, Yeh C H, Huang J C, Chiu P W J A N 2012 Nanscale 6 4469
[5] Allain A, Kang J, Banerjee K, Kis A J N M 2015 Nat. Mater. 14 1195
[6] Zhang L, Zhang P Z, Liu F, Li F Z, Luo Y, Hou J W, Wu K P 2024 Acta Phys. Sin. 73 047101 (in Chinese)[张冷,张鹏展,刘飞,李方政,罗毅,侯纪伟,吴孔平2024 73 047101]
[7] Ling X, Wang H, Huang S, Xia F, Dresselhaus M S 2015 PNAS 112 4523
[8] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475
[9] Cheng Q Z, Huang Y, Li Y H, Zhang K, Xian G Y, Liu H Y, Che B Y, Pan L L, Han Y C, Zhu K, Qi Q, Xie Y F, Pan J B, Chen H L, Li Y F, Guo H, Yang H T, Gao H J 2023 Acta Phys. Sin. 72 218102(in Chinese)[程秋振,黄引,李玉辉,张凯,冼国裕,刘鹤元,车冰 玉,潘禄禄,韩烨超,祝轲,齐琦,谢耀锋,潘金波,陈海龙,李永峰,郭辉,杨海涛, 高鸿钧2023 72 218102]
[10] Xue P, Chu D, Xie C, Tikhonov E, Butler K T 2022 J. Phys. Chem. C 126 17398
[11] Greenaway A L, Ke S, Culman T, Talley K R, Mangum J S, Heinselman K N, Kingsbury R S, Smaha R W, Gish M K, Miller E M, Persson K A, Gregoire J M, Bauers S R, Neaton J B, Tamboli A C, Zakutayev A 2022 J. Am. Chem. Soc. 144 13673
[12] Szymanski N J, Walters L N, Hellman O, Gall D, Khare S V 2018 J. Mater. Chem. A 6 20852
[13] Arca E, Perkins J D, Lany S, Mis A, Chen B R, Dippo P, Partridge J L, Sun W, Holder A, Tamboli A C, Toney M F, Schelhas L T, Ceder G, Tumas W, Teeter G, Zakutayev A 2019 Mater. Horiz. 6 1669
[14] Bauers S R, Holder A, Sun W, Melamed C L, Woods-Robinson R, Mangum J, Perkins J, Tumas W, Gorman B, Tamboli A, Ceder G, Lany S, Zakutayev A 2019 PNAS 116 14829
[15] Hinuma Y, Hatakeyama T, Kumagai Y, Burton L A, Sato H, Muraba Y, Iimura S, Hiramatsu H, Tanaka I, Hosono H J N C 2016 Nat. Commun. 7 11962
[16] Kangsabanik J, Alam A 2019 Phys. Rev. Mater. 3 105405
[17] Shiraishi A, Kimura S, He X, Watanabe N, Katase T, Ide K, Minohara M, Matsuzaki K, Hiramatsu H, Kumigashira H, Hosono H, Kamiya T 2022 Inorg. Chem. 61 6650
[18] Zakutayev A, Jankousky M, Wolf L, Feng Y, Rom C L, Bauers S R, Borkiewicz O, LaVan D A, Smaha R W, Stevanovic V 2024 Nat. Synth 3 1471
[19] Ming X, Kuang X 2024 Nat. Synth 3 1444
[20] Liu J, Lu S, Wang Y, Li C, Ming X, Kuang X 2022 Chem. Mater. 34 4505
[21] Gregory D H, Barker M G, Edwards P P, Siddons D J 1996 Inorg. Chem. 35 7608
[22] Seeger O, Strähle J 1994 Z NATURFORSCH B 49 1169
[23] Li X, Wang X, Han Y, Jing X, Huang Q, Kuang X, Gao Q, Chen J, Xing X 2017 Chem. Mater. 29 1989
[24] Farault G, Gautier R, Baker C F, Bowman A, Gregory D H 2003 Chem. Mater. 15 3922
[25] Gregory D H, Barker M G, Edwards P P, Siddons D J 1998 Inorg. Chem. 37 3775
[26] Seeger O, Hofmann M, Strähle J, Laval J P, Frit B 2004 Z Anorg. Allg. Chem. 620 2008
[27] Gregory D H, Barker M G, Edwards P P, Slaski M, Siddons D J 1998 J. Solid. State. Chem. 137 62
[28] Gregory D H, O'Meara P M, Gordon A G, Siddons D J, Blake A J, Barker M G, Hamor T A, 2001 J. Alloys Compd 317-318 237
[29] Yao M, Zhang Y, Ban J, Hou J, Zhang B, Liu J, Ming X, Kuang X 2023 PCCP 25 19158
[30] Ohkubo I, Mori T 2015 Chem. Mater. 27 7265
[31] Ohkubo I, Mori T 2016 APL Mater. 4 104808
[32] Liang H, Lu J, Zhang W, Ming X 2025 Mater. Sci. Semicond. Process. 185 108955
[33] Luo H, Wang H, Bi Z, Zou G, McCleskey T M, Burrell A K, Bauer E, Hawley M E, Wang Y, Jia Q 2009 Angew. Chem. Int. Ed. 48 1490
[34] Kaur A, Ylvisaker E R, Li Y, Galli G, Pickett W E 2010 PHYS REV B. 82 155125
[35] Yao M, Li M, Zhang L, Wang H 2024 PHYS REV B. 110 115202
[36] Yang X F, Wang Z Q, Fu H H 2024 PHYS REV B. 109 155414
[37] Blöchl P E 1994 PHYS REV B. 50 17953
[38] Kresse G, Joubert D 1999 PHYS REV B. 59 1758
[39] Kresse G, Furthmüller J 1996 PHYS REV B. 54 11169
[40] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Monkhorst H J, Pack J D 1976 PHYS REV B. 13 5188
[42] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[44] Yim K, Yong Y, Lee J, Lee K, Nahm H-H, Yoo J, Lee C, Seong Hwang C, Han S 2015 NPG Asia Mater. 7 e190
[45] Gonze X, Lee C 1997 PHYS REV B. 55 10355
[46] Giannozzi P, de Gironcoli S, Pavone P, Baroni S 1991 PHYS REV B. 43 7231
[47] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[48] Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C, Kresse G 2016 Sci. Rep. 6 28618
[49] Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 PHYS REV B. 73 045112
[50] Zhao X, Vanderbilt D 2002 PHYS REV B. 65 075105
[51] Cockayne E, Burton B P 2000 PHYS REV B. 62 3735
[52] Bardeen J, Shockley W 1950 Phys. Rev. 80 72
[53] Mouhat F, Coudert F-X 2014 PHYS REV B. 90 224104
[54] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 PHYS REV B. 76 054115
[55] Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033
[56] Yu R, Xiao F, Lei W, Wang W, Ma Y, Gong X, Ming X 2023 PCCP 25 30066
[57] Pugh S F 2009 Lond.Edinb.Phil.Mag. 45 823
[58] Liao M, Liu Y, Min L, Lai Z, Han T, Yang D, Zhu J 2018 Intermetallics 101 152
[59] Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543
[60] Zhang H, Guégan F, Wang J, Frapper G 2024 PCCP 26 14675
[61] Heying B, Smorchkova I, Poblenz C, Elsass C, Fini P, Den Baars S, Mishra U, Speck J S 2000 Appl. Phys. Lett. 77 2885
[62] Lang H, Zhang S, Liu Z 2016 PHYS REV B. 94 235306
[63] Kosarev I, Kistanov A 2024 Nanoscale 16 10030
[64] Zhang H, Wang J, Guégan F, Frapper G 2023 Nanoscale 15 7472
[65] Dvorak M, Wei S-H, Wu Z 2013 Phys. Rev. Lett. 110 016402
[66] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, DenBaars S P 1997 Appl. Phys. Lett. 71 2572
计量
- 文章访问数: 53
- PDF下载量: 1
- 被引次数: 0