搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状氮化物BaMN2(M = Ti, Zr, Hf)各向异性物理性质的第一性原理研究

虞健祥 梁华琳 杨轶钧 明星

引用本文:
Citation:

层状氮化物BaMN2(M = Ti, Zr, Hf)各向异性物理性质的第一性原理研究

虞健祥, 梁华琳, 杨轶钧, 明星

First-principles study of anisotropic physical properties of layered nitride BaMN2 (M = Ti, Zr, Hf)

YU Jianxiang, LIANG Hualin, YANG YiJun, MING Xing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 三元层状氮化物因其独特的电学、光学和光电性质而受到广泛关注, 有希望用于制造低成本、高效率的光电材料、太阳能电池材料和光催化剂. 三元层状氮化物BaZrN2和BaHfN2已经被固态实验合成, 但其光学性质和电输运性质尚未被系统地研究. 本文采用基于密度泛函理论的第一性原理计算系统地研究了BaMN2(M = Ti, Zr, Hf)氮化物的力学、电子、光吸收、载流子传输和介电响应性质. 由于BaMN2氮化物由准二维[MN2]2–板层排列组成独特的层状晶体结构, 且板层内的电子云重叠较多形成强共价键, 板层之间的成键作用较弱, 使得其物理性质表现出显著的各向异性. 首先, BaMN2的体模量、剪切模量、杨氏模量和泊松比等力学性质表现出各向异性, 具有较低的模量、较高的泊松比和Pugh模量比, 表明其具有良好的塑性. 此外, BaMN2具有处于可见光能量范围内的间接带隙值(1.75—2.25 eV), 适宜用于太阳能电池吸收层, 且带边位置满足水分解光催化剂的要求. 由于其载流子在不同方向上的有效质量存在巨大差异, 使得它们还具有超高各向异性的载流子迁移率(103 cm2/(s·v)数量级)和较低的激子结合能. 同时, 沿平面内方向和面外方向的原子排列和成键作用存在显著差异, 导致在低能量区域沿平面内具有非常强的光吸收能力和较高的各向异性可见光吸收系数(105 cm–1数量级); 而在较高的能量区域中, 电子从占据态到非占据态的跃迁概率增大, 导致对光的吸收情况变得更复杂, 各向异性相对减弱. 此外, 特殊的层状结构沿垂直于板层的方向具有较低极化率和较高振动频率, 使得BaMN2有较高的介电常数. 这些优异的各向异性的力学、光电和输运性质使得BaMN2层状氮化物可以作为光电子、光伏和光催化领域的有前景的半导体材料.
    Ternary layered nitrides have received widespread attention due to their unique electrical, optical and optoelectronic properties, which are promising for the fabrication of low-cost and high-efficiency optoelectronic materials, solar cell materials and photocatalysts. Although there is a lack of experimental reports on BaTiN2 so far, BaZrN2 and BaHfN2 have been synthesized experimentally by solid state methods. However, their optical and electrical transport properties have not been investigated systematically. This work is to systematically investigates the mechanical, electronic, optical absorption, carrier transport, and dielectric response properties of BaMN2 (M = Ti, Zr, Hf) nitrides through first-principles calculations based on density functional theory. Due to the quasi-two-dimensional layered arrangement of [MN2]2– slabs, the ionic bonds between Ba2+ and N3–, and the weak interactions between the slabs, the deformation along this direction is most likely to occur under the action of external stress. BaMN2 nitrides exhibit significant anisotropic physical properties. Firstly, the mechanical properties of BaMN2, such as bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, show prominent anisotropy. The lower modulus, higher Poisson’s ratios and Pugh’s modulus ratios indicate good flexibility of the BaMN2 nitrides. In addition, BaMN2 has indirect bandgap values (1.75–2.25 eV) within the visible-light energy range, which meets the basic requirement for the band gap of a photocatalyst for water splitting (greater than 1.23 eV). Moreover, BaMN2 has suitable band-edge positions. The appropriate bandgap values and band-edge positions indicate their broad application prospects in the absorber layer of solar cells and photocatalytic water decomposition. Due to the significant difference in the effective mass of its charge carriers between different directions, BaMN2 exhibits ultrahigh anisotropic carrier mobility (on the order of 103 cm2⋅s–1⋅v–1) and lower exciton binding energy. At the same time, there are significant differences in atomic arrangement and bonding interactions between the in-plane direction and out of plane direction, resulting in high anisotropic visible-light absorption coefficient (on the order of 105 cm–1) in the low energy region. In contrast, the increase of the opportunity for electrons to transition from occupied to unoccupied states leads to more complex light absorption and relatively reduced anisotropy in higher energy region. Furthermore, the special layered structure has lower polarizability and higher vibration frequency along the vertical direction perpendicular to the [MN2]2– layers, rendering BaMN2 nitrides show high dielectric constants. These excellent anisotropic mechanical, optoelectronic, and transport properties allow BaMN2 layered nitrides to be used as promising semiconductor materials in the fields of optoelectronics, photovoltaics, and photocatalysis.
  • 图 1  BaMN2的晶体结构模型, 蓝色、粉色和青色的球分别表示Ba, M和N原子

    Fig. 1.  Crystal structures of BaMN2, the blue, pink and azure balls denote Ba, M and N atoms.

    图 2  (a) BaTiN2, (b) BaZrN2和(c) BaHfN2的ELF切片图, 上图和下图分别是(001)平面和(100)平面

    Fig. 2.  Slices of the electron localization function (ELF) for (a) BaTiN2, (b) BaZrN2 and (c) BaHfN2, top and bottom planes are the (001) and (100) planes, respectively.

    图 3  BaMN2的体模量、剪切模量、杨氏模量和泊松比ν (a) BaTiN2; (b) BaZrN2; (c) BaHfN2

    Fig. 3.  Bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio ν of BaMN2: (a) BaTiN2; (b) BaZrN2; (c) BaHfN2.

    图 4  (a) BaTiN2, (b) BaZrN2和(c) BaHfN2的电子能带结构和态密度以及(d)带边位置

    Fig. 4.  Electronic band structures and density of states (DOS) of (a) BaTiN2, (b) BaZrN2, and (c) BaHfN2 as well as (d) band edge positions.

    图 5  CBM和VBM在实空间中的波函数 (a) BaTiN2; (b) BaZrN2; (c) BaHfN2

    Fig. 5.  Wave function of CBM and VBM in real space: (a) BaTiN2; (b) BaZrN2; (c) BaHfN2.

    图 6  BaMN2的可见光吸收系数 (a) BaTiN2; (b) BaZrN2; (c) BaHfN2

    Fig. 6.  Optical absorption coefficient of BaMN2: (a) BaTiN2; (b) BaZrN2; (c) BaHfN2.

    表 1  BaMN2的晶格常数, 晶格体积和M—N键长的理论计算值与实验(括号中数据)对比

    Table 1.  Comparison of theoretically calculated and experimental measured (in parenthesis) lattice constants, lattice volumes and the M—N bond lengths of BaMN2.

    abcV/Å3lM-N1lM-N2
    BaTiN24.0114.0118.107130.4541.8062.105
    BaZrN24.188
    (4.161[26])
    4.188
    (4.161[26])
    8.478
    (8.392[26])
    148.7252.022
    (2.06[28])
    2.213
    (2.208[28])
    BaHfN24.149
    (4.128[27])
    4.149
    (4.128[27])
    8.481
    (8.382[27])
    145.9711.991
    (2.05[28])
    2.196
    (2.186[28])
    下载: 导出CSV

    表 2  BaMN2的弹性常数Cij、体模量B、剪切模量G、杨氏模量Y、泊松比ν、Pugh模量比(B/G). 模量下标V和R分别表示Voigt-Reuss-Hill模型近似中Voigt和Reuss模型的结果, 没有下标的BG定义为Voigt和Reuss值的平均值

    Table 2.  Elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus Y, Poisson’s ratio ν, Pugh’s ratio (B/G) of BaMN2. The subscripts V and R of the moduli denote results from the Voigt and Reuss models, while B and G moduli without subscripts are defined as the average of the Reuss and Voight values from the Voigt-Reuss-Hill approximations.

    MaterialsC11/GPaC12/GPaC13/GPaC22/GPaC23/GPaC33/GPaC44/GPaC55/GPaC66/GPa
    BaTiN2180.639126.13656.702180.63956.702121.44838.49338.493118.834
    BaZrN2151.829110.79766.919151.82966.919129.39637.72337.72395.162
    BaHfN2163.876118.40769.072163.87669.072130.41937.81137.811103.077
    MaterialsBV/GPaBR/GPaBGVGRG/GPaY/GPaνB/G
    BaTiN2106.87095.480101.17555.38042.42048.900126.2530.2942.070
    BaZrN2102.48098.630100.55546.68036.53941.610109.5800.3182.420
    BaHfN2107.920102.211105.06649.18038.36643.773115.1940.3172.400
    下载: 导出CSV

    表 3  BaMN2的有效质量m*、形变势常数Ei和载流子迁移率μ

    Table 3.  Effective mass m*, deformation potential constants Ei, and carrier mobility μ of BaMN2.

    MaterialCarrierm*/m0Ei/eVμ/(cm2·s–1·v–1)
    x/yzx/yzx/yz
    BaTiN2Electron0.23729.929–7.366–4.1597439.4060.088
    Hole0.5362.560–8.141–5.514791.78123.277
    BaZrN2Electron0.22932.657–7.652–2.3996313.6010.225
    Hole0.4005.435–8.017–4.6691426.4025.267
    BaHfN2Electron0.22330.268–7.650–0.6797286.0373.429
    Hole0.4153.608–7.870–3.7311457.15823.152
    下载: 导出CSV

    表 4  介电张量的对角线分量的电子和离子贡献和介电常数

    Table 4.  Diagonal components of the dielectric tensor from the electronic and ionic contributions and dielectric permittivity.

    Material $ {\varepsilon }_{{\mathrm{e}}{\mathrm{l}}{\mathrm{e}}} $ $ {\varepsilon }_{{\mathrm{i}}{\mathrm{o}}{\mathrm{n}}} $ $ {\varepsilon }_{{\mathrm{r}}} $
    x/y z x/y z
    BaTiN2 10.59 7.48 35.70 18.40 39.48
    BaZrN2 8.30 7.88 39.08 18.61 40.42
    BaHfN2 7.71 7.46 34.37 16.32 35.98
    下载: 导出CSV

    表 5  BaMN2的波恩有效电荷张量及平均值($ {Z}^{*} $)

    Table 5.  Born effective charges tensors along three directions (x, y and z) and the average value ($ {Z}^{*} $) of BaMN2.

    BaTiN2 BaZrN2 BaHfN2
    x/y z $ {Z}^{*} $ x/y z $ {Z}^{*} $ x/y z $ {Z}^{*} $
    Ba 2.884 3.094 2.954 2.687 3.233 2.869 2.751 3.130 2.877
    M 5.355 2.689 4.466 4.811 3.362 4.328 4.617 3.098 4.111
    N1 –2.611 –4.357 –3.193 –2.582 –4.839 –3.334 –2.613 –4.552 –3.259
    N2 –5.650 –1.433 –4.244 –4.926 –1.764 –3.872 –4.763 –1.672 –3.733
    下载: 导出CSV

    表 6  声子模及其频率$ {\omega }_{\lambda } $(以cm–1为单位)和有效电荷$ \widetilde{{Z}_{\lambda }^{*}} $(以|e|表示)

    Table 6.  The mode, mode frequencies $ {\omega }_{\lambda } $ (in cm–1) and effective charges $ \widetilde{{Z}_{\lambda }^{*}} $ (in |e|).

    ModeSymmetryActivePolarizationBaTiN2BaZrN2BaHfN2
    $ {\omega }_{\lambda } $$ \widetilde{{Z}_{\lambda }^{*}} $$ {\omega }_{\lambda } $$ \widetilde{{Z}_{\lambda }^{*}} $$ {\omega }_{\lambda } $$ \widetilde{{Z}_{\lambda }^{*}} $
    1-2EuIRx-y1190.52670.34620.24
    3-4EgRamanx-y800730760
    5A2uIRz1100.52990.43890.30
    6A1gRamanz115010901090
    7-8EgRamanx-y225015701390
    9A1gRamanz285022201660
    10-11EuIRx-y2860.232040.312130.48
    12-13EgRamanx-y336026202340
    14B1gRamanz300031103250
    15-16EuIRx-y3326.103594.383633.84
    17A2uIRz4960.044620.694520.78
    18-19EgRamanx-y560054105720
    20A2uIRz6822.905883.076052.53
    21A1gRamanz769067906830
    下载: 导出CSV
    Baidu
  • [1]

    Ahmed S, Yi J B 2017 Nano-Micro Lett. 9 106313

    [2]

    Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y, Duan X F 2010 Nature 467 305Google Scholar

    [3]

    Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, Yoo W J 2021 2D Mater. 8 012002Google Scholar

    [4]

    Lu C C, Lin Y C, Yeh C H, Huang J C, Chiu P W J A N 2012 Nanscale 6 4469

    [5]

    Allain A, Kang J, Banerjee K, Kis A J N M 2015 Nat. Mater. 14 1195Google Scholar

    [6]

    张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平 2024 73 047101Google Scholar

    Zhang L, Zhang P Z, Liu F, Li F Z, Luo Y, Hou J W, Wu K P 2024 Acta Phys. Sin. 73 047101Google Scholar

    [7]

    Ling X, Wang H, Huang S X, Xia F N, Dresselhaus M S 2015 PNAS 112 4523Google Scholar

    [8]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [9]

    程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧 2023 72 218102Google Scholar

    Cheng Q Z, Huang Y, Li Y H, Zhang K, Xian G Y, Liu H Y, Che B Y, Pan L L, Han Y C, Zhu K, Qi Q, Xie Y F, Pan J B, Chen H L, Li Y F, Guo H, Yang H T, Gao H J 2023 Acta Phys. Sin. 72 218102Google Scholar

    [10]

    Xue P Y, Chu D D, Xie C W, Tikhonov E, Butler K T 2022 J. Phys. Chem. C 126 17398Google Scholar

    [11]

    Greenaway A L, Ke S, Culman T, Talley K R, Mangum J S, Heinselman K N, Kingsbury R S, Smaha R W, Gish M K, Miller E M, Persson K A, Gregoire J M, Bauers S R, Neaton J B, Tamboli A C, Zakutayev A 2022 J. Am. Chem. Soc. 144 13673Google Scholar

    [12]

    Szymanski N J, Walters L N, Hellman O, Gall D, Khare S V 2018 J. Mater. Chem. A 6 20852Google Scholar

    [13]

    Arca E, Perkins J D, Lany S, Mis A, Chen B R, Dippo P, Partridge J L, Sun W, Holder A, Tamboli A C, Toney M F, Schelhas L T, Ceder G, Tumas W, Teeter G, Zakutayev A 2019 Mater. Horiz. 6 1669Google Scholar

    [14]

    Bauers S R, Holder A, Sun W, Melamed C L, Woods-Robinson R, Mangum J, Perkins J, Tumas W, Gorman B, Tamboli A, Ceder G, Lany S, Zakutayev A 2019 PNAS 116 14829Google Scholar

    [15]

    Hinuma Y, Hatakeyama T, Kumagai Y, Burton L A, Sato H, Muraba Y, Iimura S, Hiramatsu H, Tanaka I, Hosono H J N C 2016 Nat. Commun. 7 11962Google Scholar

    [16]

    Kangsabanik J, Alam A 2019 Phys. Rev. Mater. 3 105405Google Scholar

    [17]

    Shiraishi A, Kimura S, He X, Watanabe N, Katase T, Ide K, Minohara M, Matsuzaki K, Hiramatsu H, Kumigashira H, Hosono H, Kamiya T 2022 Inorg. Chem. 61 6650Google Scholar

    [18]

    Zakutayev A, Jankousky M, Wolf L, Feng Y, Rom C L, Bauers S R, Borkiewicz O, LaVan D A, Smaha R W, Stevanovic V 2024 Nat. Synth 3 1471Google Scholar

    [19]

    Ming X, Kuang X J 2024 Nat. Synth. 3 1444Google Scholar

    [20]

    Liu J W, Lu S L, Wang Y H, Li C, Ming X, Kuang X J 2022 Chem. Mater. 34 4505

    [21]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1996 Inorg. Chem. 35 7608Google Scholar

    [22]

    Seeger O, Strähle J 1994 Z. Naturforsch. B 49 1169Google Scholar

    [23]

    Li X H, Wang X M, Han Y F, Jing X P, Huang Q Z, Kuang X J, Gao Q L, Chen J, Xing X R 2017 Chem. Mater. 29 1989Google Scholar

    [24]

    Farault G, Gautier R, Baker C F, Bowman A, Gregory D H 2003 Chem. Mater. 15 3922Google Scholar

    [25]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1998 Inorg. Chem. 37 3775Google Scholar

    [26]

    Seeger O, Hofmann M, Strähle J, Laval J P, Frit B 2004 Z Anorg. Allg. Chem. 620 2008

    [27]

    Gregory D H, Barker M G, Edwards P P, Slaski M, Siddons D J 1998 J. Solid. State. Chem. 137 62Google Scholar

    [28]

    Gregory D H, O’Meara P M, Gordon A G, Siddons D J, Blake A J, Barker M G, Hamor T A, 2001 J. Alloys Compd 317-318 237Google Scholar

    [29]

    Yao M, Zhang Y Y, Ban J M, Hou J J, Zhang B W, Liu J W, Ming X, Kuang X J 2023 PCCP 25 19158Google Scholar

    [30]

    Ohkubo I, Mori T 2015 Chem. Mater. 27 7265Google Scholar

    [31]

    Ohkubo I, Mori T 2016 APL Mater. 4 104808Google Scholar

    [32]

    Liang H L, Lu J, Zhang W Y, Ming X 2025 Mater. Sci. Semicond. Process. 185 108955Google Scholar

    [33]

    Luo H M, Wang H Y, Bi Z X, Zou G F, McCleskey T M, Burrell A K, Bauer E, Hawley M E, Wang Y Q, Jia Q X 2009 Angew. Chem. Int. Ed. 48 1490Google Scholar

    [34]

    Kaur A, Ylvisaker E R, Li Y, Galli G, Pickett W E 2010 Phys. Rev. B 82 155125Google Scholar

    [35]

    Yao M L, Li M, Zhang L, Wang H 2024 Phys. Rev. B 110 115202Google Scholar

    [36]

    Yang X F, Wang Z Q, Fu H H 2024 Phys. Rev. B 109 155414Google Scholar

    [37]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [38]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [39]

    Kresse G, Furthmüller J 1996 P Phys. Rev. B 54 11169Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [44]

    Yim K, Yong Y, Lee J, Lee K, Nahm H H, Yoo J, Lee C, Seong Hwang C, Han S 2015 NPG Asia Mater. 7 e190Google Scholar

    [45]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [46]

    Giannozzi P, de Gironcoli S, Pavone P, Baroni S 1991 Phys. Rev. B 43 7231Google Scholar

    [47]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [48]

    Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C, Kresse G 2016 Sci. Rep. 6 28618Google Scholar

    [49]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [50]

    Zhao X, Vanderbilt D 2002 Phys. Rev. B 65 075105Google Scholar

    [51]

    Cockayne E, Burton B P 2000 Phys. Rev. B 62 3735Google Scholar

    [52]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [53]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [54]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [55]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [56]

    Yu R, Xiao F, Lei W, Wang W, Ma Y P, Gong X J, Ming X 2023 PCCP 25 30066Google Scholar

    [57]

    Pugh S F 2009 Lond. Edinb. Phil. Mag. 45 823

    [58]

    Liao M Q, Liu Y, Min L J, Lai Z H, Han T Y, Yang D N, Zhu J C 2018 Intermetallics 101 152Google Scholar

    [59]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543Google Scholar

    [60]

    Zhang H, Guégan F, Wang J, Frapper G 2024 PCCP 26 14675Google Scholar

    [61]

    Heying B, Smorchkova I, Poblenz C, Elsass C, Fini P, Den Baars S, Mishra U, Speck J S 2000 Appl. Phys. Lett. 77 2885Google Scholar

    [62]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [63]

    Kosarev I, Kistanov A 2024 Nanoscale 16 10030Google Scholar

    [64]

    Zhang H, Wang J J, Guégan F, Frapper G 2023 Nanoscale 15 7472Google Scholar

    [65]

    Dvorak M, Wei S H, Wu Z 2013 Phys. Rev. Lett. 110 016402Google Scholar

    [66]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, DenBaars S P 1997 Appl. Phys. Lett. 71 2572Google Scholar

  • [1] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高.  , doi: 10.7498/aps.73.20240557
    [2] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究.  , doi: 10.7498/aps.73.20231353
    [3] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , doi: 10.7498/aps.71.20221019
    [4] 李欢, 叶小球, 唐俊, 敖冰云, 高涛. Li-Y-H三元氢化物的结构和稳定性研究.  , doi: 10.7498/aps.71.20210824
    [5] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究.  , doi: 10.7498/aps.69.20191632
    [6] 康健彬, 李倩, 李沫. 氮化物子带跃迁探测器材料结构对器件效率的影响.  , doi: 10.7498/aps.68.20190722
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , doi: 10.7498/aps.63.047101
    [8] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , doi: 10.7498/aps.61.097102
    [9] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究.  , doi: 10.7498/aps.61.027801
    [10] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究.  , doi: 10.7498/aps.61.197102
    [11] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究.  , doi: 10.7498/aps.61.016202
    [12] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究.  , doi: 10.7498/aps.61.048102
    [13] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 淀积在不同小倾角蓝宝石衬底的n型GaN的研究.  , doi: 10.7498/aps.58.2644
    [14] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究.  , doi: 10.7498/aps.57.5476
    [15] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究.  , doi: 10.7498/aps.57.6213
    [16] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究.  , doi: 10.7498/aps.57.7729
    [17] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究.  , doi: 10.7498/aps.56.5353
    [18] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子.  , doi: 10.7498/aps.56.1911
    [19] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究.  , doi: 10.7498/aps.54.955
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  275
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-29
  • 修回日期:  2025-01-03
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map