Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the anisotropic physical properties of the layered nitride BaMN2 (M = Ti, Zr, Hf)

Yu Jian-Xiang Liang Hua-Lin Yang Yi-Jun Ming Xing

Citation:

First-principles study on the anisotropic physical properties of the layered nitride BaMN2 (M = Ti, Zr, Hf)

Yu Jian-Xiang, Liang Hua-Lin, Yang Yi-Jun, Ming Xing
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Ternary layered nitrides have garnered widespread attention due to their unique electrical, optical and optoelectronic properties, which are promising for the fabrication of low-cost and highefficiency optoelectronic materials, solar cell materials and photocatalysts. Although there are no experimental reports on BaTiN2 to date, BaZrN2 and BaHfN2 have been synthesized experimentally by solid state method. However, their optical and electrical transport properties have not been systematically investigated. The purpose of this paper is to systematically investigates the mechanical, electronic, optical absorption, carrier transport, and dielectric response properties of BaMN2 (M = Ti, Zr, Hf) nitrides by first-principles calculations based on density functional theory. Due to the quasi-two-dimensional layered arrangement of [MN2]2- slabs, the ionic bonds between Ba2+ and N3-, and the weak interactions between the slabs, deformation along this direction is most likely to occur under the action of external stress. BaMN2 nitrides exhibit significant anisotropic physical properties. Firstly, the mechanical properties of BaMN2, such as bulk modulus, shear modulus, Young's modulus and Poisson's ratio, show prominent anisotropy. The lower modulus, higher Poisson's ratios and Pugh's modulus ratios indicate good flexibility of the BaMN2 nitrides. In addition, BaMN2 has indirect bandgap values (1.75-2.25 eV) within the visible-light energy range, which meets the basic requirement for the band gap of a photocatalyst for water splitting (greater than 1.23 eV). Moreover, BaMN2 has suitable band-edge positions. The appropriate bandgap values and band-edge positions indicate their broad application prospects in the absorber layer of solar cells and photocatalytic water decomposition. Attributed to the pronounced differences in the effective mass of its charge carriers in different directions, BaMN2 exhibit ultrahigh anisotropic carrier mobilities (on the order of 103 cm2s-1v-1) and lower exciton binding energies. At the same time, there are significant differences in atomic arrangement and bonding interactions along the in-plane and out of plane directions, resulting in high anisotropic visible-light absorption coefficients (on the order of 105 cm-1) in the low energy regions. In contrast, the opportunities for electrons to transition from occupied to unoccupied states increase, leading to more complex light absorption and relatively reduced anisotropy in higher energy regions. Furthermore, the special layered structure has lower polarizability and higher vibration frequency along the vertical direction perpendicular to the [MN2]2- layers, rendering BaMN2 nitrides show high dielectric constants. These excellent anisotropic mechanical, optoelectronic, and transport properties allow BaMN2 layered nitrides to be used as promising semiconductor materials in the fields of optoelectronics, photovoltaics, and photocatalysis.
  • [1]

    Ahmed S, Yi J B 2017 Nano-Micro Lett. 9 106313

    [2]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [3]

    Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, Yoo W J 2021 2D Mater. 8 012002

    [4]

    Lu C C, Lin Y C, Yeh C H, Huang J C, Chiu P W J A N 2012 Nanscale 6 4469

    [5]

    Allain A, Kang J, Banerjee K, Kis A J N M 2015 Nat. Mater. 14 1195

    [6]

    Zhang L, Zhang P Z, Liu F, Li F Z, Luo Y, Hou J W, Wu K P 2024 Acta Phys. Sin. 73 047101 (in Chinese)[张冷,张鹏展,刘飞,李方政,罗毅,侯纪伟,吴孔平2024 73 047101]

    [7]

    Ling X, Wang H, Huang S, Xia F, Dresselhaus M S 2015 PNAS 112 4523

    [8]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [9]

    Cheng Q Z, Huang Y, Li Y H, Zhang K, Xian G Y, Liu H Y, Che B Y, Pan L L, Han Y C, Zhu K, Qi Q, Xie Y F, Pan J B, Chen H L, Li Y F, Guo H, Yang H T, Gao H J 2023 Acta Phys. Sin. 72 218102(in Chinese)[程秋振,黄引,李玉辉,张凯,冼国裕,刘鹤元,车冰 玉,潘禄禄,韩烨超,祝轲,齐琦,谢耀锋,潘金波,陈海龙,李永峰,郭辉,杨海涛, 高鸿钧2023 72 218102]

    [10]

    Xue P, Chu D, Xie C, Tikhonov E, Butler K T 2022 J. Phys. Chem. C 126 17398

    [11]

    Greenaway A L, Ke S, Culman T, Talley K R, Mangum J S, Heinselman K N, Kingsbury R S, Smaha R W, Gish M K, Miller E M, Persson K A, Gregoire J M, Bauers S R, Neaton J B, Tamboli A C, Zakutayev A 2022 J. Am. Chem. Soc. 144 13673

    [12]

    Szymanski N J, Walters L N, Hellman O, Gall D, Khare S V 2018 J. Mater. Chem. A 6 20852

    [13]

    Arca E, Perkins J D, Lany S, Mis A, Chen B R, Dippo P, Partridge J L, Sun W, Holder A, Tamboli A C, Toney M F, Schelhas L T, Ceder G, Tumas W, Teeter G, Zakutayev A 2019 Mater. Horiz. 6 1669

    [14]

    Bauers S R, Holder A, Sun W, Melamed C L, Woods-Robinson R, Mangum J, Perkins J, Tumas W, Gorman B, Tamboli A, Ceder G, Lany S, Zakutayev A 2019 PNAS 116 14829

    [15]

    Hinuma Y, Hatakeyama T, Kumagai Y, Burton L A, Sato H, Muraba Y, Iimura S, Hiramatsu H, Tanaka I, Hosono H J N C 2016 Nat. Commun. 7 11962

    [16]

    Kangsabanik J, Alam A 2019 Phys. Rev. Mater. 3 105405

    [17]

    Shiraishi A, Kimura S, He X, Watanabe N, Katase T, Ide K, Minohara M, Matsuzaki K, Hiramatsu H, Kumigashira H, Hosono H, Kamiya T 2022 Inorg. Chem. 61 6650

    [18]

    Zakutayev A, Jankousky M, Wolf L, Feng Y, Rom C L, Bauers S R, Borkiewicz O, LaVan D A, Smaha R W, Stevanovic V 2024 Nat. Synth 3 1471

    [19]

    Ming X, Kuang X 2024 Nat. Synth 3 1444

    [20]

    Liu J, Lu S, Wang Y, Li C, Ming X, Kuang X 2022 Chem. Mater. 34 4505

    [21]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1996 Inorg. Chem. 35 7608

    [22]

    Seeger O, Strähle J 1994 Z NATURFORSCH B 49 1169

    [23]

    Li X, Wang X, Han Y, Jing X, Huang Q, Kuang X, Gao Q, Chen J, Xing X 2017 Chem. Mater. 29 1989

    [24]

    Farault G, Gautier R, Baker C F, Bowman A, Gregory D H 2003 Chem. Mater. 15 3922

    [25]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1998 Inorg. Chem. 37 3775

    [26]

    Seeger O, Hofmann M, Strähle J, Laval J P, Frit B 2004 Z Anorg. Allg. Chem. 620 2008

    [27]

    Gregory D H, Barker M G, Edwards P P, Slaski M, Siddons D J 1998 J. Solid. State. Chem. 137 62

    [28]

    Gregory D H, O'Meara P M, Gordon A G, Siddons D J, Blake A J, Barker M G, Hamor T A, 2001 J. Alloys Compd 317-318 237

    [29]

    Yao M, Zhang Y, Ban J, Hou J, Zhang B, Liu J, Ming X, Kuang X 2023 PCCP 25 19158

    [30]

    Ohkubo I, Mori T 2015 Chem. Mater. 27 7265

    [31]

    Ohkubo I, Mori T 2016 APL Mater. 4 104808

    [32]

    Liang H, Lu J, Zhang W, Ming X 2025 Mater. Sci. Semicond. Process. 185 108955

    [33]

    Luo H, Wang H, Bi Z, Zou G, McCleskey T M, Burrell A K, Bauer E, Hawley M E, Wang Y, Jia Q 2009 Angew. Chem. Int. Ed. 48 1490

    [34]

    Kaur A, Ylvisaker E R, Li Y, Galli G, Pickett W E 2010 PHYS REV B. 82 155125

    [35]

    Yao M, Li M, Zhang L, Wang H 2024 PHYS REV B. 110 115202

    [36]

    Yang X F, Wang Z Q, Fu H H 2024 PHYS REV B. 109 155414

    [37]

    Blöchl P E 1994 PHYS REV B. 50 17953

    [38]

    Kresse G, Joubert D 1999 PHYS REV B. 59 1758

    [39]

    Kresse G, Furthmüller J 1996 PHYS REV B. 54 11169

    [40]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [41]

    Monkhorst H J, Pack J D 1976 PHYS REV B. 13 5188

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [44]

    Yim K, Yong Y, Lee J, Lee K, Nahm H-H, Yoo J, Lee C, Seong Hwang C, Han S 2015 NPG Asia Mater. 7 e190

    [45]

    Gonze X, Lee C 1997 PHYS REV B. 55 10355

    [46]

    Giannozzi P, de Gironcoli S, Pavone P, Baroni S 1991 PHYS REV B. 43 7231

    [47]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [48]

    Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C, Kresse G 2016 Sci. Rep. 6 28618

    [49]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 PHYS REV B. 73 045112

    [50]

    Zhao X, Vanderbilt D 2002 PHYS REV B. 65 075105

    [51]

    Cockayne E, Burton B P 2000 PHYS REV B. 62 3735

    [52]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [53]

    Mouhat F, Coudert F-X 2014 PHYS REV B. 90 224104

    [54]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 PHYS REV B. 76 054115

    [55]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033

    [56]

    Yu R, Xiao F, Lei W, Wang W, Ma Y, Gong X, Ming X 2023 PCCP 25 30066

    [57]

    Pugh S F 2009 Lond.Edinb.Phil.Mag. 45 823

    [58]

    Liao M, Liu Y, Min L, Lai Z, Han T, Yang D, Zhu J 2018 Intermetallics 101 152

    [59]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543

    [60]

    Zhang H, Guégan F, Wang J, Frapper G 2024 PCCP 26 14675

    [61]

    Heying B, Smorchkova I, Poblenz C, Elsass C, Fini P, Den Baars S, Mishra U, Speck J S 2000 Appl. Phys. Lett. 77 2885

    [62]

    Lang H, Zhang S, Liu Z 2016 PHYS REV B. 94 235306

    [63]

    Kosarev I, Kistanov A 2024 Nanoscale 16 10030

    [64]

    Zhang H, Wang J, Guégan F, Frapper G 2023 Nanoscale 15 7472

    [65]

    Dvorak M, Wei S-H, Wu Z 2013 Phys. Rev. Lett. 110 016402

    [66]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, DenBaars S P 1997 Appl. Phys. Lett. 71 2572

  • [1] Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian. Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2. Acta Physica Sinica, doi: 10.7498/aps.73.20240557
    [2] Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu. Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method. Acta Physica Sinica, doi: 10.7498/aps.73.20231353
    [3] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20221019
    [4] Li Huan, Ye Xiao-Qiu, Tang Jun, Ao Bing-Yun, Gao Tao. Structure and stability of possible new L i-Y-H ternary hydrides. Acta Physica Sinica, doi: 10.7498/aps.71.20210824
    [5] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, doi: 10.7498/aps.69.20191632
    [6] Kang Jian-Bin, Li Qian, Li Mo. Effects of material structure on device efficiency of III-nitride intersubband photodetectors. Acta Physica Sinica, doi: 10.7498/aps.68.20190722
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, doi: 10.7498/aps.63.047101
    [8] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.097102
    [9] Zhang Yong-Wei, Yin Chun-Hao, Zhao Qiang, Li Fu-Qiang, Zhu Shan-Shan, Liu Hai-Shun. Theoretical research of correlation of electronic structure with birefringence and anisotropy of TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.027801
    [10] Yu Ben-Hai, Chen Dong. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Physica Sinica, doi: 10.7498/aps.61.197102
    [11] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, doi: 10.7498/aps.61.016202
    [12] Wang Hao, Liu Guo-Quan, Luan Jun-Hua. Study on 3D von Neumann equation with anisotropy for convex grains. Acta Physica Sinica, doi: 10.7498/aps.61.048102
    [13] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Investigation of n-type GaN deposited on sapphire substrate with different small misorientations. Acta Physica Sinica, doi: 10.7498/aps.58.2644
    [14] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, doi: 10.7498/aps.57.5476
    [15] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, doi: 10.7498/aps.57.6213
    [16] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, doi: 10.7498/aps.57.7729
    [17] Shi Li-Bin, Ren Jun-Yuan, Zhang Feng-Yun, Zhang Guo-Hua, Yu Zeng-Qiang. A study on resistive transition and anisotropy of MgB2/Al2O3 superconducting thin films. Acta Physica Sinica, doi: 10.7498/aps.56.5353
    [18] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, doi: 10.7498/aps.56.1911
    [19] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, doi: 10.7498/aps.54.955
    [20] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, doi: 10.7498/aps.51.2101
Metrics
  • Abstract views:  52
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  17 February 2025

/

返回文章
返回
Baidu
map