-
In this paper, chalcogenide glasses Ge11.5As24Se64.5–xSx (x = 0, 16.125%, 32.25%, 48.375% and 64.5%) are prepared and their optical properties are studied in order to select the best components for the use in optical devices. The values of laser damage threshold, refractive index, and third-order nonlinear refractive index, as well as the absorption spectra of the glasses are measured. The results show that the linear and third-order nonlinear refractive indices of the glass decrease gradually, the glass optical band gap increases gradually, and the laser damage threshold increases continuously after the high threshold component S atoms have been introduced gradually. We further investigate the structural origins of these changes in physical properties by Raman scattering spectra and high resolution X-ray photoelectron spectroscopy. By analyzing the evolution process of different structural units in the glass, it is found that the heteropolar bonds (Ge—Se/S, As—Se/S) are dominant in these glass network structures, and compared with Se, and that Ge and As prefer to bond with S. As the ratio of S/Se increases, the number of chemical bonds related to Se (Ge—Se, As—Se and Se—Se) decreases gradually, while the number of chemical bonds related to Se (Ge—S, As—S and S—S) increases gradually, which has little effect on the change of the topological structure of glass. It can be concluded that the main reason for the change of physical properties of glass is the difference of the strength between chemical bonds in the glass structural system.
-
Keywords:
- chalcogenide glasses /
- structure /
- optical properties
[1] Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp97−118
[2] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp118−122
[3] Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar
[4] 许思维, 王丽, 沈祥 2015 64 223302Google Scholar
Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar
[5] Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar
[6] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 64 154216Google Scholar
Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar
[7] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141Google Scholar
[8] Ren J, Lu X S, Lin C G, Jain R K 2020 Opt. Express 28 21522Google Scholar
[9] Wang R P, Bulla D, Smith A, Wang T, Luther-Davies B 2011 J. Appl. Phys. 109 023517Google Scholar
[10] Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photonics 11 798Google Scholar
[11] Wang L L, Zeng J H, Zhu L, Yang D D, Zhang Q, Zhang P Q, Wang X S, Dai S X 2018 Appl. Opt. 57 10044Google Scholar
[12] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 70 047801Google Scholar
Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar
[13] Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar
[14] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar
[15] Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436Google Scholar
[16] Wang R P, Yan K L, Yang Z Y, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16Google Scholar
[17] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar
[18] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar
[19] Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar
[20] Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar
[21] Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar
[22] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 65 154207Google Scholar
Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar
[23] Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar
[24] Mei Q, Saienga J, Schrooten J, Meyer B, Martin S W 2003 J. Non-Cryst. Solids 324 264Google Scholar
[25] Zhang Y, Xu Y S, You C Y, Xu D, Tang J Z, Zhang P Q, Dai S X 2017 Opt. Express 25 8886Google Scholar
[26] Frumarova B, Nemec P, Frumar M, Oswald J, Vlcek M 1999 J. Non-Cryst. Solids 256-257 266Google Scholar
[27] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 Journal of Non-Cryst. Solids 226 85
[28] Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar
[29] Musgraves J D, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61Google Scholar
[30] Nefedov V I 1988 X-Ray Photoelectron Spectroscopy of Solid Surfaces (Boca Raton: CRC Press) pp97−128
[31] Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517Google Scholar
[32] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar
[33] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp431−488
[34] Kovalskiy A, Jain H, Miller A C, Golovchak R Y, Shpotyuk O I 2006 J. Phys. Chem. B 110 22930Google Scholar
[35] Opletal G, Drumm D W, Wang R P, Russo S P 2014 J. Phys. Chem. A 118 4790Google Scholar
[36] Li Q L, Wang R P, Xu F, Wang X S, Yang Z Y, Gai X 2020 Opt. Mater. Express 10 1413Google Scholar
[37] Lu X S, Li J H, Yang L, Zhang R N, Zhang Y D, Ren J, Galca A C, Secu M, Farrell G, Wang P F 2020 J. Non-Cryst. Solids 528 119757Google Scholar
-
表 1 Ge11.5As24Se64.5–xSx的组分与光学参数(n, Ith, Eg和n2)
Table 1. Compositions and optical parameters (n, Ith, Eg and n2) of Ge11.5As24Se64.5–xSx glasses.
Ge11.5As24
Se64.5–xSxn Ith/(W·cm–2) Eg/eV n2/(10–14 W·cm–2) x = 0 2.639 3.95 × 105 1.859 7.411 x = 16.125 2.546 14.78 × 105 1.898 5.498 x = 32.25 2.451 21.40 × 105 1.979 3.679 x = 48.375 2.378 35.29 × 105 2.069 2.751 x = 64.5 2.261 — 2.347 2.187 表 2 拉曼散射光谱分峰拟合中各个结构单元的相对比例
Table 2. Relative ratio of the different structural units derived from the decomposed Raman scattering spectra.
Ge
Se4/2
(CS)
/%Ge
Se4/2
(ES)
/%As
Se3/2/%Se-Se/% As-Se/% As
S3/2/%Ge
S4/2
(CS)/%Ge
S4/2
(ES)/%As-S/% S-S/% Ge11.5As24Se64.5 14.79 7.52 45.36 9.28 23.05 0 0 0 0 0 Ge11.5As24Se48.375S16.125 10.24 6.97 36.36 6.27 21.57 5.96 2.35 7.63 2.65 0 Ge11.5As24Se32.25S32.25 4.98 4.63 25.65 2.09 19.08 16.26 9.47 11.92 5.61 0.31 Ge11.5As24Se16.125S48.375 0.94 2.20 13.92 0.58 16.84 26.16 11.94 19.16 7.47 0.79 Ge11.5As24S64.5 0 0 0 0 0 41.64 14.55 29.21 13.52 1.08 表 3 Ge11.5As24Se64.5–xSx 玻璃的Ge3d, As3d, Se3d 和S2p 的XPS的拟合参数
Table 3. The fitting parameters for the decomposed Ge3d, As3d, Se3d and S2p spectra of Ge11.5As24Se64.5–xSx glasses.
Structural unit Se-Se-
Ge/AsAs/Ge-Se-Ge/As S-S-
Ge/AsAs/Ge-S-Ge/As AsSe/S3/2 As-As-
related structureGeSe/S4/2 Ge-Ge-
related structureGe11.5As24Se64.5 BE/eV 54.9 54.5 — — 43.0 — 31.3 — FWHM/eV 1.11 1.13 1.03 1.01 Content/% 18 82 100 100 Ge11.5As24
Se48.375S16.125BE/eV 55.0 54.6 — 162.1 42.9 — 31.3 — FWHM/ eV 1.10 1.18 1.12 1.03 1.10 Content/% 13 87 100 100 100 Ge11.5As24
Se32.25S32.25BE/eV 54.9 54.5 162.4 162.1 43.0 — 31.4 — FWHM/ eV 1.09 1.11 1.21 1.23 1.15 1.04 Content/% 11 89 6 94 100 100 Ge11.5As24
Se16.125S48.375BE/eV 55.0 54.6 162.3 162.0 42.9 — 31.2 — FWHM/ eV 1.11 1.14 1.25 1.11 1.11 1.14 Content/% 8 92 12 88 100 100 Ge11.5As24S64.5 BE/eV — — 162.3 162.1 42.8 — 31.3 — FWHM/ eV 1.21 1.12 1.03 1.09 Content/% 16 84 100 100 -
[1] Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp97−118
[2] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp118−122
[3] Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar
[4] 许思维, 王丽, 沈祥 2015 64 223302Google Scholar
Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar
[5] Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar
[6] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 64 154216Google Scholar
Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar
[7] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141Google Scholar
[8] Ren J, Lu X S, Lin C G, Jain R K 2020 Opt. Express 28 21522Google Scholar
[9] Wang R P, Bulla D, Smith A, Wang T, Luther-Davies B 2011 J. Appl. Phys. 109 023517Google Scholar
[10] Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photonics 11 798Google Scholar
[11] Wang L L, Zeng J H, Zhu L, Yang D D, Zhang Q, Zhang P Q, Wang X S, Dai S X 2018 Appl. Opt. 57 10044Google Scholar
[12] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 70 047801Google Scholar
Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar
[13] Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar
[14] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar
[15] Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436Google Scholar
[16] Wang R P, Yan K L, Yang Z Y, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16Google Scholar
[17] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar
[18] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar
[19] Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar
[20] Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar
[21] Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar
[22] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 65 154207Google Scholar
Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar
[23] Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar
[24] Mei Q, Saienga J, Schrooten J, Meyer B, Martin S W 2003 J. Non-Cryst. Solids 324 264Google Scholar
[25] Zhang Y, Xu Y S, You C Y, Xu D, Tang J Z, Zhang P Q, Dai S X 2017 Opt. Express 25 8886Google Scholar
[26] Frumarova B, Nemec P, Frumar M, Oswald J, Vlcek M 1999 J. Non-Cryst. Solids 256-257 266Google Scholar
[27] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 Journal of Non-Cryst. Solids 226 85
[28] Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar
[29] Musgraves J D, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61Google Scholar
[30] Nefedov V I 1988 X-Ray Photoelectron Spectroscopy of Solid Surfaces (Boca Raton: CRC Press) pp97−128
[31] Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517Google Scholar
[32] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar
[33] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp431−488
[34] Kovalskiy A, Jain H, Miller A C, Golovchak R Y, Shpotyuk O I 2006 J. Phys. Chem. B 110 22930Google Scholar
[35] Opletal G, Drumm D W, Wang R P, Russo S P 2014 J. Phys. Chem. A 118 4790Google Scholar
[36] Li Q L, Wang R P, Xu F, Wang X S, Yang Z Y, Gai X 2020 Opt. Mater. Express 10 1413Google Scholar
[37] Lu X S, Li J H, Yang L, Zhang R N, Zhang Y D, Ren J, Galca A C, Secu M, Farrell G, Wang P F 2020 J. Non-Cryst. Solids 528 119757Google Scholar
Catalog
Metrics
- Abstract views: 4682
- PDF Downloads: 63
- Cited By: 0