Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass

Xu Si-Wei Yang Xiao-Ning Yang Da-Xin Wang Xun-Si Shen Xiang

Citation:

Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass

Xu Si-Wei, Yang Xiao-Ning, Yang Da-Xin, Wang Xun-Si, Shen Xiang
PDF
HTML
Get Citation
  • In this paper, chalcogenide glasses Ge11.5As24Se64.5–xSx (x = 0, 16.125%, 32.25%, 48.375% and 64.5%) are prepared and their optical properties are studied in order to select the best components for the use in optical devices. The values of laser damage threshold, refractive index, and third-order nonlinear refractive index, as well as the absorption spectra of the glasses are measured. The results show that the linear and third-order nonlinear refractive indices of the glass decrease gradually, the glass optical band gap increases gradually, and the laser damage threshold increases continuously after the high threshold component S atoms have been introduced gradually. We further investigate the structural origins of these changes in physical properties by Raman scattering spectra and high resolution X-ray photoelectron spectroscopy. By analyzing the evolution process of different structural units in the glass, it is found that the heteropolar bonds (Ge—Se/S, As—Se/S) are dominant in these glass network structures, and compared with Se, and that Ge and As prefer to bond with S. As the ratio of S/Se increases, the number of chemical bonds related to Se (Ge—Se, As—Se and Se—Se) decreases gradually, while the number of chemical bonds related to Se (Ge—S, As—S and S—S) increases gradually, which has little effect on the change of the topological structure of glass. It can be concluded that the main reason for the change of physical properties of glass is the difference of the strength between chemical bonds in the glass structural system.
      Corresponding author: Xu Si-Wei, xusiwei1227@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004067, 11847159), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50410), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 18C0744)
    [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp97−118

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp118−122

    [3]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [4]

    许思维, 王丽, 沈祥 2015 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [5]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar

    [6]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [7]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141Google Scholar

    [8]

    Ren J, Lu X S, Lin C G, Jain R K 2020 Opt. Express 28 21522Google Scholar

    [9]

    Wang R P, Bulla D, Smith A, Wang T, Luther-Davies B 2011 J. Appl. Phys. 109 023517Google Scholar

    [10]

    Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photonics 11 798Google Scholar

    [11]

    Wang L L, Zeng J H, Zhu L, Yang D D, Zhang Q, Zhang P Q, Wang X S, Dai S X 2018 Appl. Opt. 57 10044Google Scholar

    [12]

    田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 70 047801Google Scholar

    Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar

    [13]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [14]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar

    [15]

    Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436Google Scholar

    [16]

    Wang R P, Yan K L, Yang Z Y, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16Google Scholar

    [17]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [18]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar

    [19]

    Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar

    [20]

    Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar

    [21]

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar

    [22]

    徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 65 154207Google Scholar

    Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar

    [23]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar

    [24]

    Mei Q, Saienga J, Schrooten J, Meyer B, Martin S W 2003 J. Non-Cryst. Solids 324 264Google Scholar

    [25]

    Zhang Y, Xu Y S, You C Y, Xu D, Tang J Z, Zhang P Q, Dai S X 2017 Opt. Express 25 8886Google Scholar

    [26]

    Frumarova B, Nemec P, Frumar M, Oswald J, Vlcek M 1999 J. Non-Cryst. Solids 256-257 266Google Scholar

    [27]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 Journal of Non-Cryst. Solids 226 85

    [28]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [29]

    Musgraves J D, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61Google Scholar

    [30]

    Nefedov V I 1988 X-Ray Photoelectron Spectroscopy of Solid Surfaces (Boca Raton: CRC Press) pp97−128

    [31]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517Google Scholar

    [32]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [33]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp431−488

    [34]

    Kovalskiy A, Jain H, Miller A C, Golovchak R Y, Shpotyuk O I 2006 J. Phys. Chem. B 110 22930Google Scholar

    [35]

    Opletal G, Drumm D W, Wang R P, Russo S P 2014 J. Phys. Chem. A 118 4790Google Scholar

    [36]

    Li Q L, Wang R P, Xu F, Wang X S, Yang Z Y, Gai X 2020 Opt. Mater. Express 10 1413Google Scholar

    [37]

    Lu X S, Li J H, Yang L, Zhang R N, Zhang Y D, Ren J, Galca A C, Secu M, Farrell G, Wang P F 2020 J. Non-Cryst. Solids 528 119757Google Scholar

  • 图 1  Ge11.5As24Se64.5–xSx玻璃制备的流程图

    Figure 1.  Flow chart of Ge11.5As24Se64.5–xSx glasses fabrication.

    图 2  Ge11.5As24Se64.5–xSx玻璃的拉曼散射光谱分峰拟合图

    Figure 2.  Raman scattering spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions.

    图 3  (a) Ge11.5As24Se64.5–xSx 玻璃的S2p 的XPS分解; (b) Ge11.5As24Se64.5–xSx 玻璃的Se3d 的XPS分解

    Figure 3.  (a) S2p spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions; (b) Se3d spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions.

    图 4  (a) Ge11.5As24Se64.5–xSx 玻璃的Ge3d 的XPS分解; (b) Ge11.5As24Se64.5–xSx 玻璃的As3d 的XPS分解

    Figure 4.  (a) Ge3d spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions; (b) As3d spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions.

    表 1  Ge11.5As24Se64.5–xSx的组分与光学参数(n, Ith, Egn2)

    Table 1.  Compositions and optical parameters (n, Ith, Eg and n2) of Ge11.5As24Se64.5–xSx glasses.

    Ge11.5As24
    Se64.5–xSx
    nIth/(W·cm–2)Eg/eVn2/(10–14 W·cm–2)
    x = 02.6393.95 × 1051.8597.411
    x = 16.1252.54614.78 × 1051.8985.498
    x = 32.252.45121.40 × 1051.9793.679
    x = 48.3752.37835.29 × 1052.0692.751
    x = 64.52.2612.3472.187
    DownLoad: CSV

    表 2  拉曼散射光谱分峰拟合中各个结构单元的相对比例

    Table 2.  Relative ratio of the different structural units derived from the decomposed Raman scattering spectra.

    Ge
    Se4/2
    (CS)
    /%
    Ge
    Se4/2
    (ES)
    /%
    As
    Se3/2/%
    Se-Se/%As-Se/%As
    S3/2/%
    Ge
    S4/2
    (CS)/%
    Ge
    S4/2
    (ES)/%
    As-S/%S-S/%
    Ge11.5As24Se64.514.797.5245.369.2823.0500000
    Ge11.5As24Se48.375S16.12510.246.9736.366.2721.575.962.357.632.650
    Ge11.5As24Se32.25S32.254.984.6325.652.0919.0816.269.4711.925.610.31
    Ge11.5As24Se16.125S48.3750.942.2013.920.5816.8426.1611.9419.167.470.79
    Ge11.5As24S64.50000041.6414.5529.2113.521.08
    DownLoad: CSV

    表 3  Ge11.5As24Se64.5–xSx 玻璃的Ge3d, As3d, Se3d 和S2p 的XPS的拟合参数

    Table 3.  The fitting parameters for the decomposed Ge3d, As3d, Se3d and S2p spectra of Ge11.5As24Se64.5–xSx glasses.

    Structural unit
    Se-Se-
    Ge/As
    As/Ge-Se-Ge/AsS-S-
    Ge/As
    As/Ge-S-Ge/AsAsSe/S3/2As-As-
    related structure
    GeSe/S4/2Ge-Ge-
    related structure
    Ge11.5As24Se64.5 BE/eV 54.9 54.5 43.0 31.3
    FWHM/eV 1.11 1.13 1.03 1.01
    Content/% 18 82 100 100
    Ge11.5As24
    Se48.375S16.125
    BE/eV 55.0 54.6 162.1 42.9 31.3
    FWHM/ eV 1.10 1.18 1.12 1.03 1.10
    Content/% 13 87 100 100 100
    Ge11.5As24
    Se32.25S32.25
    BE/eV 54.9 54.5 162.4 162.1 43.0 31.4
    FWHM/ eV 1.09 1.11 1.21 1.23 1.15 1.04
    Content/% 11 89 6 94 100 100
    Ge11.5As24
    Se16.125S48.375
    BE/eV 55.0 54.6 162.3 162.0 42.9 31.2
    FWHM/ eV 1.11 1.14 1.25 1.11 1.11 1.14
    Content/% 8 92 12 88 100 100
    Ge11.5As24S64.5 BE/eV 162.3 162.1 42.8 31.3
    FWHM/ eV 1.21 1.12 1.03 1.09
    Content/% 16 84 100 100
    DownLoad: CSV
    Baidu
  • [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp97−118

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp118−122

    [3]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [4]

    许思维, 王丽, 沈祥 2015 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [5]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar

    [6]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [7]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141Google Scholar

    [8]

    Ren J, Lu X S, Lin C G, Jain R K 2020 Opt. Express 28 21522Google Scholar

    [9]

    Wang R P, Bulla D, Smith A, Wang T, Luther-Davies B 2011 J. Appl. Phys. 109 023517Google Scholar

    [10]

    Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photonics 11 798Google Scholar

    [11]

    Wang L L, Zeng J H, Zhu L, Yang D D, Zhang Q, Zhang P Q, Wang X S, Dai S X 2018 Appl. Opt. 57 10044Google Scholar

    [12]

    田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 70 047801Google Scholar

    Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar

    [13]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [14]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar

    [15]

    Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436Google Scholar

    [16]

    Wang R P, Yan K L, Yang Z Y, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16Google Scholar

    [17]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [18]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar

    [19]

    Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar

    [20]

    Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar

    [21]

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar

    [22]

    徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 65 154207Google Scholar

    Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar

    [23]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar

    [24]

    Mei Q, Saienga J, Schrooten J, Meyer B, Martin S W 2003 J. Non-Cryst. Solids 324 264Google Scholar

    [25]

    Zhang Y, Xu Y S, You C Y, Xu D, Tang J Z, Zhang P Q, Dai S X 2017 Opt. Express 25 8886Google Scholar

    [26]

    Frumarova B, Nemec P, Frumar M, Oswald J, Vlcek M 1999 J. Non-Cryst. Solids 256-257 266Google Scholar

    [27]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 Journal of Non-Cryst. Solids 226 85

    [28]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [29]

    Musgraves J D, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61Google Scholar

    [30]

    Nefedov V I 1988 X-Ray Photoelectron Spectroscopy of Solid Surfaces (Boca Raton: CRC Press) pp97−128

    [31]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517Google Scholar

    [32]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [33]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp431−488

    [34]

    Kovalskiy A, Jain H, Miller A C, Golovchak R Y, Shpotyuk O I 2006 J. Phys. Chem. B 110 22930Google Scholar

    [35]

    Opletal G, Drumm D W, Wang R P, Russo S P 2014 J. Phys. Chem. A 118 4790Google Scholar

    [36]

    Li Q L, Wang R P, Xu F, Wang X S, Yang Z Y, Gai X 2020 Opt. Mater. Express 10 1413Google Scholar

    [37]

    Lu X S, Li J H, Yang L, Zhang R N, Zhang Y D, Ren J, Galca A C, Secu M, Farrell G, Wang P F 2020 J. Non-Cryst. Solids 528 119757Google Scholar

  • [1] Xia Ke-Lun, Guan Yong-Nian, Gu Jie-Rong, Jia Guang, Wu Miao-Miao, Shen Xiang, Liu Zi-Jun. Structural evolution of Ge20Se80–xTex glass networks and assessment of glass properties by theoretical bandgap. Acta Physica Sinica, 2024, 73(14): 146303. doi: 10.7498/aps.73.20240637
    [2] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties. Acta Physica Sinica, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Tao Qiang, Ma Shuai-Ling, Cui Tian, Zhu Pin-Wen. Structures and properties of functional transition metal borides. Acta Physica Sinica, 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [6] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [7] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [8] Lin Chang-Gui, Zhai Su-Min, Li Zhuo-Bin, Qu Guo-Shun, Gu Shao-Xuan, Tao Hai-Zheng, Dai Shi-Xun. Physiochemical properties and crystallization behavior of GeS2-In2S3 chalcogenide glasses. Acta Physica Sinica, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [9] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [10] Li Jian-Hua, Cui Yuan-Shun, Zeng Xiang-Hua, Chen Gui-Bin. Investigations of structural phase transition, electronic structures and optical properties in ZnS. Acta Physica Sinica, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [11] Zhang Wei, Chen Yu, Fu Jing, Chen Fei-Fei, Shen Xiang, Dai Shi-Xun, Lin Chang-Gui, Xu Tie-Feng. Study on fabrication and optical properties of Ge-Sb-Se thin films. Acta Physica Sinica, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [12] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [13] Wang Hong-Yan, Zhang Zhi-Dong, Zhang Zhong-Yue, Sun Zhong-Hua. Optical properties of gold nanoring structures. Acta Physica Sinica, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [14] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [16] Wang Wei-Na, Fang Qing-Qing, Zhou Jun, Wang Sheng-Nan, Yan Fang-Liang, Liu Yan-Mei, Li Yan, Lü Qing-Rong. Influence of fabrication technique on structure and photoluminescence of Zn1-xMgxO thin films. Acta Physica Sinica, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [17] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [20] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
Metrics
  • Abstract views:  4682
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2021
  • Accepted Date:  12 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map