-
In this paper, we prepare several GexSb20Se80-x glasses (x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%, and 25 mol%), and measure their Raman and X-ray photoelectron spectra (Ge 3d, Sb 4d, and Se 3d) in order to understand the evolution of the glass structure with chemical composition. We further decompose the spectra into different structural units according to the assignments of these structural units in the previous literature. It is found that the structural units of SeSeSe trimers exist in the Se-rich glasses, but the number of the structural units of trimers decreases rapidly with the increase of Ge concentration and finally becomes zero in Ge15Sb20Se65 glass. With the increase of Ge concentration, the quantity of GeSe4/2 tetrahedral structures increases, but the number of SbSe3/2 pyramidal structures remains almost unchanged in the Se-rich glasses. On the other hand, the numbers of GeGe and SbSb homopolar bonds increase with the increase of Ge concentration, but those of the GeSe4/2 tetrahedral and SbSe3/2 pyramidal structures decrease in the Se-poor glasses. Moreover, the SeSe homopolar bonds exist in all the glasses, and they cannot be completely suppressed. When the composition is close to stochiometric value, the glass is dominated by heteropolar GeSe and SbSe bonds, but has negligible quantities of GeGe, SbSb and SeSe homopolar bonds. The transition threshold, rather than the transition predicted by the topological constraint model, occurs at the chemically stoichiometric glasses. This suggests that chemical order, rather than topological order, is a main factor in determining structures and physical properties of GeSbSe glasses.
[1] Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141
[2] Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804
[3] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120
[4] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635
[5] Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[6] Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792
[7] Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947
[8] Philipps J C 1979 J. Non-Cryst. Solids 34 153
[9] Tanaka K 1989 Phys. Rev. B 39 1270
[10] Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520
[11] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109
[12] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615
[13] Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575
[14] Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713
[15] Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 63 136502]
[16] Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 61 056801]
[17] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518
[18] Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221
[19] Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601
[20] Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315
[21] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[22] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85
[23] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827
[24] Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663
[25] Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571
[26] Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702
[27] Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205
[28] Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537
[29] Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517
[30] Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162
[31] Li J, Drabold D A 2000 Phys. Rev. B 61 11998
-
[1] Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141
[2] Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804
[3] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120
[4] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635
[5] Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[6] Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792
[7] Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947
[8] Philipps J C 1979 J. Non-Cryst. Solids 34 153
[9] Tanaka K 1989 Phys. Rev. B 39 1270
[10] Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520
[11] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109
[12] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615
[13] Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575
[14] Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713
[15] Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 63 136502]
[16] Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 61 056801]
[17] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518
[18] Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221
[19] Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601
[20] Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315
[21] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[22] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85
[23] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827
[24] Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663
[25] Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571
[26] Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702
[27] Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205
[28] Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537
[29] Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517
[30] Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162
[31] Li J, Drabold D A 2000 Phys. Rev. B 61 11998
Catalog
Metrics
- Abstract views: 7917
- PDF Downloads: 251
- Cited By: 0